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Abstract
A review is presented of phenomena involving thermal focusing and
optical bistability arising from the temperature dependence of the refractive
index in ferroelectrics. Aperiodic spatio-temporal oscillations have been
observed in the light transmitted and reflected by parallel-sided crystal and
ceramic samples of the thermo-optic ferroelectrics PMN (lead magnesium
niobate, Pb(Mg1/3Nb2/3)O3), PLZT (lanthanum doped lead zirconium titanate,
Pb(Zr1−xTix)O3:La), BNN (barium sodium niobate, Ba2NaNb5O15) and
Ce:SBN (cerium doped strontium barium niobate, Ce3+:SrxBa1−xNb2O6) under
steady illumination by an incident c.w. laser beam of finite beamwidth. Such
materials focus the incident beam due to the temperature dependence of the
refractive index and the establishment of a radial temperature gradient. The
shape of the resulting thermal lens varies in time as a result of variation in
the absorbed energy arising from both thermal focusing and optical bistability
(Fabry–Pérot resonance). Whereas PMN and PLZT exhibit relaxation
oscillations, the beam oscillations produced by BNN and Ce:SBN have equal
rise and fall times. We compare the predictions of theoretical models with
experimental results for ferroelectric ceramics and crystals. The principal
conclusions from the present work are that (1) there are two distinct mechanisms
for aperiodic oscillation in dispersively nonlinear plates, viz., focusing
oscillations and Fabry–Pérot switching oscillations, of which only the latter
involves bistability; (2) in Fabry–Pérot etalons with a diffusive nonlinearity,
as contrasted with the systems (e.g. laser tubes) originally described by
Gordon et al, the diffusive quantity (i.e. temperature) can exhibit bistable and
multistable switching behaviour, leading to regenerative oscillations in other
variables (e.g. light output); (3) there are two characteristic relaxation times
involved in these oscillations, differing by several orders of magnitude; (4) the
spatio-temporal characteristics of the transmitted beam patterns in the near and
far fields can be quantitatively predicted and (5) comparison between theory
and experiment can provide information on the temperature dependence of
conductivity and thermo-optic coefficient near the ferroelectric phase transition.
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Glossary of symbols used

A(u, ζ, τ ) absorption factor
As constant smoothed absorption factor
Amax maximum absorption factor
Amin minimum absorption factor
Bn coefficient in Green function (appendix A)
Cn coefficient in Green function (appendix A)
C C = AsP/4πLK (appendix B)
Dn coefficient in Green function (appendix A)
E(u, ζ ) light field within Fabry–Pérot resonator
EF (r, z) light field of the forward travelling wave
EB(r, z) light field of the backward travelling wave
E0(u, ζ ) slowly varying wave amplitude
E1(x) exponential integral function:

∫ ∞ dt e−t /t

Fα coefficient of finesse: Fα = 4R e−αL/(1 − R e−αL)2

F Fresnel number = L/kn0w
2
0

G(u, ζ, θ, τ ; u′, ζ ′, θ ′, τ ′) Green function (appendix A)
G(s, τ ) Hankel transform: G(s, τ ) = ∫ ∞

0 du uJ0(su) exp(−2u2)A(u, τ )

G G = AsP (dn/dT )/πw2LKn0

H linearized heat transfer coefficient
Ic beam irradiance within the sample
Ii incident beam irradiance Ii(r) = Ip exp(−2r2/w2)

Ip peak incident irradiance Ip = 2P/πw2

I0, I1 modified Bessel function of the first kind of order 0, 1
J0 Bessel function of order zero
K thermal conductivity
K0, K1 modified Bessel function of the second kind of order 0, 1
L sample thickness
M number of thermal switches
M{τ, τ ′, T (0, τ ′)} kernel of the Volterra integral
P incident light power P = πw2Ip/2
Pabs absorbed power
PT transmitted power
Q parameter Q = 4k2n2

0w
4

R reflection coefficient
S(u, ζ ) eikonal function
T (r, z, t) temperature increment above ambient within sample
T̄ (u, τ ) temperature above ambient averaged over sample thickness

T̃ (s, τ ) Hankel transform of temperature averaged over sample thickness
Tsm(u, τ ) smoothed temperature profile
T , T ′ amplitude transmission coefficient for light entering/leaving the

sample
U parameter U 2 = u2 + u′2 − 2uu′ cos(θ − θ ′) (appendix A)
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Uη(u), Uσ (u) functions of u (appendix B)
V (g) ‘potential energy’ function (appendix B)
W parameter W = −96L2/k2n2

0w
4 (appendix B)

Zη(ζ ), Zσ (ζ ) functions of ζ (appendix B)
b sample radius
c specific heat
c0 speed of light in vacuum
e base of natural logarithm (exp)

f (ζ ) function: 2f 2(ς) = 1 + (QG)−1 + [1 − (QG)−1] cos(2L
√
Gς)

g(ζ ) ansatz function (Ein approximation) β(ζ ) = −w2g′(ς)/8L2 (appendix B)
gn(ζ ) function gn(ς) = (ηn cos ηnς + h sin ηnς) (appendix A)
h parameter h = HL/K

k free space wavenumber k = 2π/λ
m integer index (mode number)
n refractive index
p(ζ ) function p(ζ ) = e−g(ζ ) − 1 (appendix B)
r cylindrical polar coordinate
s Hankel transform variable
t time
tK conduction time tK = w2ρc/K

tc convection–radiation relaxation time tc = ρcL/2H
u reduced radius u = r/w

w beamwidth
x arbitrary variable
z axial coordinate
α extinction coefficient
αa absorption coefficient
αs scattering coefficient
βm roots of the characteristic equation: tan(βm/2) = h/βm (appendix A)
β(ζ ) ansatz function
β, γ, δ critical exponents (section 6)
γ ′ Euler’s constant = 0.577 21 . . .

γn roots of the characteristic equation: tan γn = 2γnh/(γ
2
n −h2) (appendix A)

δm roots of the characteristic equation: tan(δm/2) = −δm/h (appendix A)
η(u, ζ ), σ(u, ζ ) transformed variables (appendix B)
ζ reduced axial coordinate z/L

χ parameter χ = (dn/dT )/n0 + (dL/dT )/L, n(T ) = n0(1 + χT )

κ thermal diffusivity κ = K/ρc

φ(ζ ) variable phase parameter
λ free space wavelength
µ parameter µ2 = 2Hw2/LK

ν variable of integration
ρ density
θ angular variable of integration
τ reduced time τ = t/tK
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1. Introduction

All transparent substances, including solids, liquids, and gases, display the thermo-optic effect,
i.e. their refractive index n depends on temperature T . This temperature dependence of n

produces two distinct experimental effects, which may occur separately or in combination,
namely thermal lensing, either focusing or defocusing, which occurs when the incident
beamwidth is small compared to the sample thickness, and optical bistability, which occurs in
the presence of a feedback mechanism.

Thermal lensing was originally studied by Gordon, Leite et al at Bell Labs in the early
1960s because it produces defocusing in gas lasers, which was regarded as a nuisance. In gases,
thermal lensing always involves defocusing, because the refractive index n(T ) is proportional
to the density of the gas, which necessarily decreases with increasing temperature; thus dn/dT
is negative, with the focal strength proportional to dn/dT .

Thermal focusing was first observed in solids in the crystalline ferroelectric lithium niobate
(LiNbO3) by Akhmanov et al (1967, 1968a, b) and in ferroelectric ceramics by Altshuler et al
(1986). In crystals n(T ) can either increase or decrease with temperature. As phase transition
temperatures Tc are approached from below, it is usual that one index increases sharply and
another decreases. For example, in a tetragonal–cubic transition, two indices become equal at
the transition temperature but one increases below Tc and the other decreases. For a continuous
phase transition the derivative dn/dT actually diverges at Tc. Since the thermal focal strength
is proportional to dn/dT , this produces extremely large focusing effects very near Tc. For
this reason thermal lensing is best studied near continuous (second order or tricritical) phase
transition points. Indeed, accurate information about the critical exponents beta, characterizing
the order parameter, and delta, characterizing the isothermal response to conjugate fields, can
be obtained.

As pointed out by Gibbs (1985), optical bistability cannot be produced by thermo-optic
nonlinearity alone; it requires feedback, e.g. in a Fabry–Pérot or ring cavity. For parallel-sided,
polished samples of appropriate thickness, the absorption coefficient and reflectivity of some
materials is such that they constitute intrinsic Fabry–Pérot resonators. In combination with the
thermo-optic effect this feedback mechanism can give rise to photo-thermal optical bistability,
which has important device applications. It was first recognized by Grohs et al (1990) that
photo-thermal optical bistability could be used as a photonic temperature sensor. Although
this is truly photonic (no wires in or out), it is relatively slow (ms) and hence not in the family
of ultrafast (fs) photonic devices. Nevertheless, it can be of real utility in remote sensing in
hazardous environments. Other applications, to be discussed below, include gas flow sensors
(the effect in crystals is sensitive to convection at the sample surfaces), negative feedback
intra-cavity noise limiters for lasers, and related practical devices.

One of the surprises encountered in experiments on ferroelectrics was that they exhibit
oscillatory output, either with or without optical bistability (including regenerative pulsations)
even in the absence of external feedback. This is because only certain ferroelectric samples
have appropriate values of absorption coefficient and reflectivity to constitute intrinsic Fabry–
Pérot resonators for a given sample thickness. Since such samples simultaneously exhibit
thermal focusing and bistability, their effect on focused laser beams can be described neither
by simple thermal focusing theory based on an equation first-order in time (which does not
permit oscillatory solutions) nor by the theory of longitudinal (plane wave) optical bistability.
In fact the rigorous theory provided in the present review shows that oscillation can be expected
under a broad range of realistic parameters and at very low powers (<100 mW). Thus this
thermo-optic bistability is not in the usual high-power regime of nonlinear optics, but can
be realized with ordinary, inexpensive c.w. gas lasers (argon or helium–neon), making the
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experiments accessible to a wide range of researchers. A second surprise afforded by careful
analysis is that there are not one but two characteristic times in the problem, which differ by a
factor of more than 1000. Thus, the perspective we now have on thermal focusing is radically
different than in the 1970s. Most important is that this technique is cheap, easy and accurate,
but as yet has been unexploited as a probe of condensed matter physics. The purpose of the
present review is to provide condensed matter physicists with a comprehensive review of a
useful new optical tool.

Optical bistability (OB) is defined by the existence of two discrete values of the optical
output of a system for a single value of the input, over some range of the input power. OB has
been extensively studied in a variety of systems, both experimentally and theoretically (Gibbs
1985). It may involve variation in the refractive index (dispersive OB) or the absorption
coefficient (absorptive OB) of the sample. Initially, theoretical models were developed for
non-diffusive OB in which the refractive index (Wagner et al 1968, Felber and Marburger
1976, Gagnon 1990) or absorption coefficient (Scott 1975, Scott et al 1975, see also the
review by Scott 1986) depends directly on the optical irradiance. In these cases the system
can be modelled in general by a pair of coupled nonlinear partial differential equations for
the fields of the forward and backward travelling waves. Various techniques have been used
to obtain solutions to these equations under a wide range of assumptions. Hybrid optical
bistability (using an electrical delay line in the feedback) was reported in ceramic PLZT by
Gibbs (1981). It was shown theoretically (Ikeda 1979, Ikeda et al 1980) and experimentally
in atomic vapours and glass fibres (Nakatsuka et al 1983, Harrison et al 1983, 1984) that
feedback in a ring cavity with an intensity-dependent refractive index (Kerr-type nonlinearity)
can produce intrinsic non-diffusive optical bistability with regenerative pulsations, including
period doubling. Models for non-diffusive longitudinal OB assuming incident plane waves
were also developed for Fabry–Pérot feedback by Miller (1981), Jewell et al (1982), Wherrett
(1984) and Garmire (1989) and for transverse OB involving incident beams of finite extent
(Marburger and Felber 1978, Rozanov and Semenov 1980, Moloney and Gibbs 1982, Khoo
et al 1984, Weaire et al 1985, Weaire and Kermode 1986, Vitrant et al 1990a, b, Reinisch and
Vitrant 1990, see also the review by Abraham and Firth 1990).

Such models are inadequate to describe the diffusive nonlinearities which occur in
ferroelectrics, including both thermal and photo-refractive effects (Rozanov 1981, Kurtz et al
1987, Seglins et al 1987, 1988, Krumins et al 1988). Spontaneous aperiodic oscillations
in the intensity and spatial structure of the output beams have been observed under steady
laser illumination of ferroelectrics such as PMN, PLZT, Ce:SBN and BNN (Chen et al 1992,
Chen and Scott 1993a, b, Scott and Chen 1992) in which thermal focusing had been studied
in detail (Scott et al 1990). Typical far field thermally focused beam patterns are shown in
figure 1. In PMN the oscillations are smooth, i.e. they have approximately equal rise and fall
times at low power (below about 0.1 W depending on sample thickness) but take the form of
asymmetric relaxation oscillations at higher power (O’Sullivan et al 1996a), e.g. see figure 2.
Initial observations with PLZT also showed smooth oscillations (Krumins et al 1995) but we
have recently observed the transition from smooth oscillations to relaxation oscillations at an
incident power of about 0.7 W in a 1 mm ceramic PLZT sample. In BNN and Ce:SBN, on
the other hand, only smooth oscillations have been observed, e.g. figure 3. The reason for the
absence of optical bistability and relaxation oscillations in BNN and Ce:SBN is different in
each case and is discussed in section 3 of this paper. In the PMN and PLZT experiments, the
Fabry–Pérot cavity formed by the parallel-sided sample is decoupled from the laser, either by
a using a non-zero incidence angle or by interposing a quarter wave plate between the laser and
the sample. Hence the observed oscillations are quite distinct from the oscillations between
the longitudinal modes of a laser coupled to a Fabry–Pérot cavity discussed in the standard text
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Figure 1. (a) Far field transmitted beam patterns from ceramic PMN plate under focused laser
illumination (Chen and Scott 1993b). (b) Transmitted beam pattern from BNN, showing extreme
anisotropy near TC (Chen and Scott 1993a). (c) Transmitted beam pattern from SBN (Chen et al
1991b).

0 2 4 6 8 10 12 14 16 18 20 22
TIME (s)

CENTRAL INTENSITY

TOTAL POWER

0 2 4 6 8 10 12 14 16 18 20 22
TIME (s)

(a) (b)

Figure 2. (a) Experimental central intensity, Ic , and total power transmitted by 0.74 mm thick
PMN single crystal after step input at 514 nm, power 290 mW. (b) Computed transmitted power
(top trace) and central transmitted intensity through PMN for same parameters as in (a) using
equation (3.12) to calculate the temperature profile.

on laser physics (Sargent et al 1974) in terms of the Lotka–Volterra equations (Lotka 1925,
Volterra 1926, 1931), by Goldstone and Garmire (1981) and Borenstein and Lamb (1972) using
the Duffing equation and by Benkert and Anderson (1991) using the May–Leonard equations
(May and Leonard 1975).

In diffusive dispersive OB, the refractive index depends on some variable, such as
temperature or charge carrier concentration, which itself obeys a diffusion equation. Hence
a theoretical model requires three coupled partial differential equations rather than two. For
narrow incident beams, dispersive OB is coupled to thermal focusing. Analytic temperature
profiles due to thermal focusing of a Gaussian incident beam were first derived by Gordon
et al (1965) and subsequently by Whinnery et al (1967) using a linear differential equation
which was first order in time. Their model lacked feedback and hence did not exhibit the
‘photo-thermal bistability’ subsequently observed in solids (Gibbs et al 1981, Scalora and
Haus 1989). Wright et al (1985) showed the importance of carrier diffusion on a Kerr type
nonlinearity but also without feedback. Rozanov (1981) derived a steady state solution for a
diffusive absorptive nonlinearity in a thin sample with only one transverse dimension. Firth
et al (1985) first treated the transverse effects of carrier diffusion in a system with (Fabry–Pérot)
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Figure 3. (a) Intensity decay at the centre of far field beam pattern transmitted by a 1.9 mm thick
Ce3+:SrxBa1−xNb2O6 (SBN) ceramic sample, using a 514 nm laser beam focused to a beamwidth
of 190 µm (Chen et al 1991b). (b) Central intensity decay curves in SBN for the same parameters
as in (a) resulting from the temperature profiles calculated using equation (3.1).

feedback provided by the boundary conditions on the forward and backward travelling light
waves. Neglecting diffraction, dependence on the axial variable (z) and on one transverse
dimension, they obtained numerical solutions for a ‘top-hat’ incident irradiance profile, i.e.
Ii(r) constant for r < w and zero for r > w. Firth (1987) showed that this model, which
corresponds to a hyperbolically driven oscillator, can lead to transverse symmetry breaking
and chaos. Weaire and al-Hourani (1990) used a similar model neglecting diffraction to
analyse the interaction among an incident set of delta function beams. Chen et al (1994) first
modelled Fabry–Pérot feedback for an incident Gaussian beam in a thermo-optic material
but assuming the temperature profile of Gordon et al (1965), instead of solving the coupled
heat and field equations. An important step towards quantitatively matching the Fabry–Pérot
etalon model to the number and timing of the experimentally observed relaxation oscillations
in the focused laser beam transmitted by a ferroelectric sample was achieved by comparing
the smoothed time-dependent radial temperature profile (given by the time-averaged Fabry–
Pérot absorption factor) with the real time interferometrically measured temperature within a
PMN crystal using an unfocused low power probe laser (O’Sullivan et al 1996b)—figure 4.
In order to account quantitatively for both the longitudinal and transverse observed bistability
phenomena in thermo-optic solids, however, it is necessary to solve the heat equation coupled
to the field equations for a Gaussian incident beam, as shown in sections 2–5 of this review.

As has been pointed out by Firth (1990) and Grynberg (1988), optical systems with a
diffusive nonlinearity involve a reaction–diffusion equation. Reaction–diffusion processes
occur whenever species react under conditions of non-uniform concentration and are involved
in phenomena as diverse as flame front propagation, chemotaxis and biological differentiation.
In general, they are governed by systems of equations which include nonlinear or coupled
diffusion equations for the concentrations of one or more species, which specify the state
of the system. In thermo-optic systems (i.e. those in which the refractive index depends
on temperature), the primary state variable is temperature; spatio-temporal variations in
temperature are transformed into spatio-temporal patterns in reflected and transmitted light,
which may be observed in both near and far field. Spatio-temporal patterns in the state
variable may thus be monitored visually as in the well known Belousov–Zhabotinsky system.
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Figure 4. (a) Experimental setup for interferometric measurement of the temperature in a
PMN Fabry–Pérot resonator undergoing thermal focusing oscillations (O’Sullivan et al 1996b).
(b) Multiple reflection interferogram produced by a 0.74 mm PMN crystal, 60 seconds after
switching on a steady 0.295 mW argon beam of beamwidth 28 µm at the sample (O’Sullivan
et al 1996b). (c) Mach–Zehnder interferogram under the same conditions.

Conditions for the occurrence of patterns, waves and oscillations in reaction–diffusion systems
are discussed in the monographs by Grindrod (1991) and Kerner and Osipov (1994).

The oscillatory phenomena in the ferroelectrics PMN and PLZT have been explained
qualitatively in terms of optical bistability (OB) arising from intrinsic Fabry–Pérot resonance
(Chen et al 1994, Krumins et al 1994, O’Sullivan et al 1995, Zheng et al 1995). One-
dimensional plane wave nonlinear etalon models had earlier been used to describe optical
bistability in interference filters, bulk semiconductors and multiple quantum-well systems
(Smith et al 1984, Dagenais et al 1985, Miller et al 1981, Yokoyama 1989). Using a finite
element solution of the slowly varying envelope equations for the light fields in a Fabry–
Pérot etalon under Gaussian illumination, Chen et al (1994) derived theoretical curves for
steady state bistability and time dependent transmitted power which qualitatively matched
experimental results. Since their model used an incorrect temperature profile, however, it did
not provide a quantitative fit and was unable to match qualitatively the time dependence of
the central irradiance in figure 2. Furthermore, no systematic explanation has been provided
for the quantitative dependence of the switching times and spatial structure of the transmitted
beams on sample properties, input power and beam diameter and the existence of a threshold
(which is absent in thermal focusing).

In PMN and PLZT the threshold for oscillations is quite different from the threshold for
the appearance of the first minimum in the thermal lens pattern, for example in PMN:

(1) To within a factor of two, the thermal lens pattern has the same power threshold for
an unfocused beam (diameter 2 mm) as for beam focused by a 15 cm focal length lens
(diameter ∼40µm). On the other hand, the power threshold for oscillations for the focused
beam is ∼100 mW whereas there are no oscillations for powers <1 watt for the unfocused
beam. Above the oscillation threshold, as shown in figure 5, a plot of transmitted power
versus incident power (Chen and Scott 1993b) exhibits optical bistability with several
hysteresis loops.

(2) With a focused beam, oscillations disappear when the angle of incidence is increased to the
point where overlap of internally reflected beams falls below ∼50%, whereas the thermal
lens pattern is almost unchanged.
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Figure 5. (a) Bistability curve of transmitted power versus incident power for 0.43 mm ceramic
PMN (Chen and Scott 1993b). (b) Bistability curve for the steady state axial temperature versus
incident power from equation (4.2) for the same experimental parameters as in (a).

Although the phenomena described here are intrinsically slow (ms) due to the thermal time
constants involved, and consequently are of little interest for ns or ps photonic switching
systems, they nevertheless provide several real commercial applications: First among these
is the their use as intra-cavity noise reduction devices for argon ion lasers. At present the
preferred scheme for noise limitation in such lasers is to use an extra-cavity feedback system
consisting of fast electronics. However, it has already been demonstrated (Ozolinsh et al
1997) that a thick film of PMN or PLZT inserted into the etalon holder for a single-mode
argon laser (figure 6(a)) provides a cheap, robust and reliable feedback element with >80%
noise reduction (figure 6(b)). This passive device simply causes beam divergence when the
power level fluctuates upwards and beam convergence when it fluctuates downwards. Both
single crystals and pressed ceramic discs can be used for this application, in which a cheap
passive device replaces an active system of fast feedback electronics. Second is the use
of the switching times of thermal relaxation oscillations to obtain direct information on the
temperature dependence of thermal conductivity and thermo-optic coefficient of ferroelectrics
near their phase transition. Third is the use for pedagogical purposes: classroom lecture
demonstrations of optical bistability and regenerative pulsations often involve simulations
(such as Duffing oscillators). PMN thick films, when combined with the Ar+ lasers readily
available in most universities for classroom or laboratory demonstrations, give an easy and
very reliable real demonstration in which the oscillation period can be varied over wide range.
Moreover the effect is visually spectacular, both because the frequencies of 1–50 Hz are
ideal for the human eye and the colour and intensity are optimum for viewing. Fourthly, the
frequencies for regenerative pulsation in these devices are very sensitive to air pressure and
flow rate, due to the convective heat transfer at the sample surfaces. It is notable that this purely
photonic device (no wires in or out) can sense 0.1 Torr absolute pressure. Therefore prototype
optical flow gauges were made capable of measuring, by laser beams only, flow rates as low as
0.003 m3 h−1 at 1 atm (Scott and Chen 1992)—see figure 7. Fifthly, it was recognized as early
as 1984 that optical bistability could be used as a temperature sensor (Miller 1984, Jaeger et al
1985, Lambsdorff et al 1986) with reduction to practice demonstrated with Ar laser-pumped
CdS (Grohs et al 1990, Wegener and Klingshirn 1987, Haddad et al 1986). Recently these
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Figure 6. (a) Block diagram of thermal focusing ferroelectric plate inserted as a passive noise-
limiter in an argon-ion laser (Ozolinsh et al 1997). (b) Noise reduction (∼80%) in an argon-ion
laser feedback circuit using ferroelectric thermal focusing, as shown in (a) (Ozolinsh et al 1997).

Figure 7. Average oscillation frequency for a ceramic PMN sensor against flow rate of ambient
air (Scott and Chen 1992).

phenomena in PMN and PLZT have been under study in Sweden (Ozolinsh et al 1997), Japan
(Chen et al 1995) and Latvia (Krumins et al 1994, 1995, 1996) as well as in the USA and
Australia (O’Sullivan et al 1995, Zheng et al 1995).
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Thermal lensing in photorefractive media, such as high-dielectric oxides, is of particular
interest because, as Bannerjee et al (1995) have pointed out, thermal focusing or defocusing
provides a transverse instability that can initiate holographic self-assembly of patterns via
optical generation of micron-sized charged defect waves. The relationship between optical
bistability and pattern self-assembly in ferroelectrics (Grynberg 1988, Firth 1990, Honda
1995, Scott and O’Sullivan 1996, Scott et al 1996) is currently under investigation.

In this paper we show that the spatio-temporal characteristics of the transmitted and
reflected beam patterns observed experimentally when a parallel-sided slab of absorbing
thermo-optic material is heated by a Gaussian laser beam can be explained quantitatively
by a thermally diffusive nonlinear etalon model. For sufficiently high values of the coefficient
of finesse and moderate values of dn/dT , the beam exhibits relaxation oscillations, as observed
in PMN (figure 2) and PLZT for sufficiently high incident power. For large dn/dT or negligible
finesse, on the other hand, the model predicts the smooth oscillations observed in BNN and
Ce:SBN (figure 3). In section 2 we describe the model and an iterative scheme for solving
the heat equation coupled to the slowly varying wave equations. In section 3.1 we show that
the temperature profile for typical experimental parameters is almost independent of the axial
coordinate z. Hence the radial temperature profile averaged over sample thickness may be used
to derive the r and z dependent beam profiles. In section 3.2 we derive the spatio-temporal
temperature profile for typical experimental conditions. In section 4 we use the analytical
solution for the radial temperature profile to derive quantitatively the switching times bistability
curves and compare with experiment. In section 5 we solve the slowly varying envelope
equations for a Gaussian incident beam to obtain computed profiles for the transmitted and
reflected beams, which are compared with experiment. The results are discussed in section 6.

2. Diffusive nonlinear etalon model

The propagation of light through thick nonlinear media has been studied by numerical
techniques under a range of conditions (Wagner et al 1968, Gibbs et al 1981, Abraham and
Firth 1990). Both the equations for the light field and the equation for the nonlinear parameter
contain time derivatives and analytic solution is not possible in general. Nor has a general
analysis been presented of the qualitative behaviour observed in different parameter regimes.
It has been shown by Weaire et al (1985) that OB disappears above a critical Fresnel number
Fc, i.e. above a critical sample thickness for given incident beamwidth (see also Weaire and
Kermode 1986). This was observed experimentally by O’Sullivan et al (1995) in PMN and is
due to the fact that above Fc the beam divergence within the sample due to diffraction is so large
that Fabry–Pérot resonance does not occur uniformly across the beam. Hence, in this paper
we consider dispersively nonlinear materials, whose thickness is less than the waist length of
the incident beam but not necessarily so thin that the thin lens approximation (Bjorkholm et al
1982, Khoo et al 1984) is valid. The temperature distribution is therefore well approximated by
that in a circular disc heated by an axial Gaussian light source of constant beamwidth through
the sample, although both the radial and azimuthal variation of the light field in response to the
temperature dependent refractive index are retained in the slowly varying wave field equations
which determine the thermal lens patterns (Wright et al 1985, Firth et al 1985). In air or
vacuum, the disc is cooled by convection and/or radiation from its faces. For experimentally
relevant temperature ranges, the convective and radiative cooling coefficients are combined
into a single linearized coefficient in the ‘radiation boundary condition’ of heat transfer theory
(Carslaw and Jaeger 1959).

The equations governing the system are the heat equation (2.1) coupled to Maxwell’s
equations for the forward and backward travelling light beams in the slowly varying envelope
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approximation (SVEA) (2.2) and (2.3) (Firth et al 1985, Wright et al 1985):

K(∇2
T T + ∂2T/∂z2) − cρ∂T /∂t = −αaIc (2.1)

∂EF /∂z = − 1
2αEF + ikn(T )EF + i(2kn0)

−1∇2
T EF (2.2)

∂EB/∂z = 1
2αEB + ikn(T )EB − i(2kn0)

−1∇2
T EB (2.3)

where z is the axial coordinate and t is time, ∇2
T = ∂2/∂x2 +∂2/∂y2 is the transverse Laplacian,

which equals {∂/∂r(r∂/∂r)}/r in the radially symmetric case, T (r, z, t) = temperature
increment above ambient within the resonator, with the initial condition T (r, z, 0) = 0,
L = disc thickness, c = specific heat, ρ = density, K = thermal conductivity and
Ic(r, z, t) is the beam intensity within the sample; EF (r, z) = E0F (r, z) exp{ikn0z − αz/2}
and EB(r, z) = E0B(r, z) exp{−ikn0z+αz/2} are the time-independent parts of the light fields
of the forward and backward travelling waves within the Fabry–Pérot resonator respectively;
α = extinction coefficient = αa + αs , where αa = absorption coefficient, αs = scattering
coefficient, k = free space wavenumber = 2π/λ, λ = free space wavelength, n0 = refractive
index at T = 0. Hence Ic(r, z, t) = (n/µ0c0)|EF + EB |2, where µ0 and c0 are the vacuum
permeability and light speed respectively. Since the light transit time through the sample is
many orders of magnitude shorter than the thermal time scales, we may assume that the electric
field distribution within the sample adjusts instantaneously to changes in the refractive index
n(T ) according to equations (2.2) and (2.3). For a thermo-optic material with a dispersive
nonlinearity due to a temperature-dependent refractive index, the optical thickness is

nL = n0L0[1 + {(dn/dT )/n0 + (dL/dT )/L0}T ] ≡ n0L0(1 + χT ) (2.4)

where (dn/dT )/n0 is the thermo-optic coefficient and (dL/dT )/L0 the linear expansion
coefficient. For thermo-optic materials such as PMN and PLZT, (dn/dT )/n0 is an order
of magnitude larger (Korshunov et al 1992, Chen et al 1994) than (dL/dT )/L0 so we may
write: χ ∼= (dn/dT )/n0. In this model, we assume that χ and the thermal conductivity
K are constant over the temperature range of the experiment. The thermo-optic coefficient
is effectively constant over a range of about 20 degrees in the vicinity of the ferroelectric
phase transition in relaxor ferroelectrics, such as PMN and PLZT (Korshunov et al 1992),
but exhibits a cusplike dependence on temperature in displacive transitions. Effects due to
possible temperature dependence of dn/dT and K will be considered in sections 4.2 and 6.

The boundary conditions for the system of equations (2.1)–(2.3) for the region 0 � z � L

are:

K∂T (r, z, t)/∂z|z=0,L = ±HT (r, z, t)|z=0,L (the ‘radiation boundary condition’) (2.5)

∂T (r, z, t)/∂r|D = 0 = T (r, z, t)|D (2.6)√
REB(r, 0) = EF (r, 0) − T Ei(r) EB(r, L) =

√
REF (r, L) (2.7)

EB(r, 0)|D = EF (r, 0)|D = 0 (2.8)

where D represents a sufficiently distant boundary in the transverse plane (e.g. r = a

where a � w, but it is not necessary to assume radial symmetry at this stage), Ei(r) =
(2µ0c0P/πw2)1/2 exp(−r2/w2) = incident amplitude, P = incident laser power, R =
reflectance, T = amplitude transmission coefficient and H = Hc + Hr is the linearized
heat transfer coefficient from the disc surfaces, which may be taken as constant for moderate
temperature differences, Hc and Hr being the linearized coefficients for convection and
radiation respectively. We assume the front face of the sample to be at the incident beam
waist. Without loss of generality we take the initial Fabry–Pérot detuning to be zero.

The system of nonlinear coupled partial differential equations (2.1)–(2.3) with the
boundary conditions (2.5)–(2.8) cannot be solved exactly in closed form, nor have numerical
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solutions been obtained for the full system, but only for simpler related systems, using either
finite difference methods or fast Hankel transforms (Gibbs 1985, Wright et al 1985, Firth
et al 1985). Furthermore questions of the nature of solutions in different parameter regimes,
including the existence of periodic solutions, have not been addressed. Periodic oscillations
are well known both in active optical resonators, such as lasers, and in passive optical
systems including gases and semiconductors (Gibbs 1985). To discover whether periodic
solutions of equations (2.1)–(2.3) exist in some region of parameter space, however, neither
numerical solution nor experiment are immediately useful, since there are at least eight variable
parameters: α, L, k, n0, dn/dT , w, cρ and K . This issue is discussed further in relation to
equations (2.9) to (2.11).

Furthermore, symmetry breaking from radially symmetric to hexatic structures has
been observed experimentally in the beam transmitted from a PMN crystal (Scott and
O’Sullivan 1996) and similar phenomena have been observed in other systems involving
different absorption and diffraction mechanisms (Grynberg 1988, Firth 1990, MacDonald
and Eichler 1992, Honda 1993). An understanding of these phenomena requires analysis of
the stability of the radially symmetric solutions of equations (2.1)–(2.3) under non-radially
symmetric spatial perturbations. In this paper we analyse the radially symmetric model;
radial symmetry breaking will be treated in a separate paper. Note that the onset of spatial
chaos in thermal focusing and the threshold for formation of a turbulent boundary layer
was first developed by Firth (1987); this is unrelated to the effective ‘optical Reynolds
number’ (defining the similarity of the thermal lensing of short pulses) derived by Steverding
(1976).

Assuming radial symmetry, we introduce the dimensionless independent variables u =
r/w, ζ = z/L and τ = t/tK = Kt/cρw2, so that equations (2.1)–(2.3) become

∇2
uT + (w/L)2∂2T/∂ς2 − ∂T /∂τ = −αaw

2Ic/K (2.9)

∂EF /∂ς = − 1
2αLEF + ikLn(T )EF + i(F/2)∇2

uEF (2.10)

∂EB/∂ς = 1
2αLEB − ikLn(T )EB − i(F/2)∇2

uEB (2.11)

where ∇2
u = {∂/∂u(u∂/∂u)}/u and F = L/kn0w

2
0 is the Fresnel number, which gives a

measure of the change in beam diameter within the sample due to diffraction. F is typically
less than 0.03 for samples of thickness �1 mm, whereas kLn0 ∼ 2 × 105 and kL(dn/dT ),
which is responsible for the change in beam diameter due to thermal focusing, is about 20.
Hence the Laplacian term in equations (2.10) and (2.11) constitutes a small perturbation and
makes an insignificant contribution to the temperature profile.

Characterization of the possible solutions of the system described by equa-
tions (2.9)–(2.11) for various parameter ranges requires a stability analysis of the steady state
solutions. Equation (2.9) indicates that heat flow from the centre of the disc is predominantly
radial or axial for w2/L2 � 1 or �1 respectively. Most experiments to date have been carried
out under the condition w2/L2 � 1, which suggests that the ζ -dependence of the tempera-
ture may be negligible. In fact, we show in appendix A that the spatio-temporal solution of
equation (2.1) with Ic replaced by a steady Gaussian heat source switched on at time τ = 0 in
a typical sample disc is independent of ζ to within 1%. We show in section 3.2 that, without
ζ -dependence of temperature, the system exhibits bistability without periodic solutions. In a
separate paper (O’Sullivan, to be submitted), we show that the ζ -dependent temperature profile
given by equations (2.9)–(2.11) is characterized by a bifurcation parameter. Below the first
bifurcation point the system possesses a single asymptotically stable steady state temperature.
At the first bifurcation point the steady state solution becomes bistable and at the second bi-
furcation point, Hopf bifurcation to a periodic solution can occur near the turning points of the
bistability curve.
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Experimental observations of bistability and aperiodic oscillations in ferroelectrics to date
have been carried out for parameter values between the first and second bifurcation points. In
this parameter range the ζ -dependence of the temperature has no qualitative effect and no
significant quantitative effect on the observed system behaviour. Hence the system can be
modelled accurately by integrating equation (2.1) or (2.9) over sample thickness to obtain a heat
balance equation for the temperature average over sample thickness T̄ (u, τ ) and using it for the
temperature in the term n(T ) in equations (2.2), (2.3), (2.10) and (2.11). Furthermore, although
the transverse Laplacian terms in equations (2.10) and (2.11) are essential for determining the
diffraction of the laser beam and hence the transmitted beam patterns, the low Fresnel number
implies that diffraction is small and, in any case, is opposed by thermal focusing. Hence
it makes a negligible difference to the heating effect of the beam. Hence for the parameter
range of the above experiments, we solve equations (2.9) to (2.11) by means of the following
self-consistent approximation procedure.

(i) In the zeroth iteration (section 3.2) the u, τ -dependent heat source term αaIc is obtained by
solving equations (2.10) and (2.11) neglecting the ∇2

u terms and treatingu, τ as parameters,
to obtain the familiar Airy function for the temperature dependence of Ic within an envelope
given by the Gaussian radial dependence of the incident beam.

(ii) The heat balance equation obtained by integrating equation (2.9) with respect to ζ is then
solved using the zeroth order source function αaIc(u, τ ) from step (i) to obtain the time
dependent axially averaged radial temperature profile T̄ (u, τ ).

(iii) In section 5 the temperature profile from step (ii) is then substituted into equations (2.10)
and (2.11), which are then solved in the first iteration (including the ∇2

u terms) to determine
the phase and amplitude of EF (r, z) and EB(r, z) and to verify the initial assumption of
step (i). This first iterative solution for the propagating beams is then used to determine
the transmitted beam patterns in the near and far field.

The analytic temperature profiles obtained by this procedure not only allow quantitative
prediction of the transmitted and reflected beam patterns, but also elucidate the functional
relationships between the various parameters involved.

3. Temperature profiles

3.1. T (u, ζ, τ ) for Gaussian heating with constant absorption factor

In appendix A we derive the Green function for equation (2.9) with Ic steady for a disc of
infinite radius subject to the ‘radiation boundary condition’ at its faces. This Green function is
then used to obtain the solution T (u, ζ, τ ) for Gaussian beam heating with constant absorption
factor and hence the steady state axial solution T (u, ζ ). Figures 8(a) and 8(b) show plots
of T (u, 0, τ ) and T (0, ζ,∞), based on equations (A.10) and (A.12). The maximum axial
variation of T (0, ζ,∞) and hence of T (u, ζ, τ ) for typical sample thicknesses is less than
1% of the difference between the central temperature and the surroundings as, for example, in
figure 8(b).

For typical experimental parameters (see section 3.2), h � 1 and hence equation (A.4)
implies that β2

1 → 2h and βm → 2π(m − 1) for m � 2, so equation (A.10) reduces to

T (u, ς, τ ) = 2Pabs cos(ς̄
√

2h)

πLK

∫ τ

0

dτ ′

1 + 8τ ′ exp

(
− 2u2

1 + 8τ ′ − µ2τ ′
)

(3.1)

where ς̄ = ς − 1/2 and µ2 = 2w2H/LK . T (u, ζ, τ ) is symmetric in ς̄ for typical values
of αaL (e.g. αaL = 0.03 in a typical PMN sample); for larger values of αaL, combination
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Figure 8. (a) Smoothed temperature evolution for a 0.74 mm thick PMN crystal under steady
295 mW irradiation with a beamwidth 28 µm at 514.5 nm, as calculated from equation (A.10).
(b) z dependence of axial temperature at steady state for the sample and conditions of (a), according
to equation (A.12).

of Ic(u, ζ, τ ) with equation (A.3) shifts the maximum of T (u, ζ, τ ) towards the front face of
the sample. For ς̄ = 0, equation (3.1) agrees with the ζ -independent result derived using the
Hankel transform in O’Sullivan et al (1996b) (note sign correction and redefinition of tK ) for
the smoothed temperature profile (i.e. the profile smoothed on a time scale large compared
with tK ). Equation (3.1) contains two time scales: the conduction time scale tK , which
determines the establishment of the radial profile for u � 1, and the convection–radiation time
scale tc = tK/µ2 = ρcL/2H , which determines the relaxation time of the whole system to
steady state. Similarly, equation (A.10) contains multiple time scales: tK and tcm = L2/κβ2

m

(m = 1, 2, 3, . . .). For typical experimental parameters, the small argument approximation
applies for m = 1 in the equation for βm so that tc1 equals tc and is about four orders of
magnitude greater than tK . Setting u, ς̄ = 0 in equation (3.1) gives the central sample
temperature as a function of time in closed form:

T (0, 0, τ ) = (Pabs/4πLK) exp(tK/8tc)[E1(tK/8tc) − E1{(1 + 8τ)tK/8tc)}] (3.2)

where E1 is the exponential integral function. Unlike earlier work (Gordon et al 1965,
Whinnery et al 1967), which ignored convection–radiation cooling, this result gives a finite
steady state temperature. For t � tc, equation (3.1) tends to Gordon’s non-convective
result uniformly on 0 � u < ∞, since the time dependence of both expressions reduces to
ln(1 + 8τ). Furthermore since the earlier analysis yielded a single characteristic time, it could
not describe even qualitatively the switching phenomena observed. We note parenthetically
that a relaxation equation was also used to describe the temperature within the illuminated
region of semiconductor systems exhibiting absorptive bistability by several authors (Hajto
and Janossy 1983, Gutowski et al 1989, Wegener and Klingshirn 1987, Haddad et al 1986,
Kretzschmar et al 1987).

The Green function derived in appendix A can be used to derive integral equations for the
cases in which Ic is not constant, but in section 3.2 we use an alternative Hankel transform
approach.
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3.2. T (u, τ ) for Gaussian heating with time-varying absorption in thin samples

As shown in figure 8(b), the gradient of T (u, ζ, τ ) in the ζ direction is small. Its maximum
value occurs at the surfaces ζ = 0, 1, where the conductive heat flux matches the heat flux to
the surroundings given by Newton’s law of cooling: K∂T (u, ζ, τ )/∂ζ |ζ=0,1 = ±HLT̄ (u, τ )

where H may be taken as constant for moderate temperature differences and T̄ (u, τ ) is the
temperature averaged over the thickness of the disc. We therefore integrate each term in
equation (2.9) with respect to ζ to obtain the heat balance equation:

∂2T/∂u2 + (∂T /∂u)/u − ∂T /∂τ = (−Iabs + 2HT )w2/LK (3.3)

where T (u, τ ) now represents T̄ (u, τ ) and Iabs(u) = ∫ 1
0 αaIc(u, ς) dς = absorbed beam

intensity. For a disc radius much greater than the beamwidth of the incident beam, the boundary
conditions on T (u, τ ) may be taken as ∂T (0, τ )/∂u = 0 and T (∞, τ ) = 0. Physically
equation (3.3) means that the rate of temperature increase within an annular slice of radius u

is proportional to net heat inflow into the slice.
Neglecting the transverse Laplacian terms and treating u, τ as parameters in the term

n{T (u, τ )}, equations (2.10) and (2.11) can be solved with the boundary conditions (2.7) and
(2.8) for an incident Gaussian beam to give the intracavity irradiance averaged over several
wavelengths:

Ic(u, ς) = Ii(u)(1 − R)Fα eαL{e−αLς + R eαL(ς−2)}
4R[1 + Fα sin2{kn(T )L}] ≡ A(u, ς, τ )Ii(u) (3.4)

where Fα = 4R e−αL/(1 − R e−αL)2 is the coefficient of finesse, Ii(u) = Ip exp(−2u2) is the
incident beam irradiance andA(u, ς, τ ) is the absorption factor. Settingu = 0 in equation (3.4)
corresponds to the plane wave case for which optical bistability has been extensively studied
(Gibbs 1985, Felber and Marburger 1976, Marburger and Felber 1978). From equation (3.4)
we obtain

Iabs(u, τ ) = αaIi(u)(1 − R)Fα(eαL − 1)(1 + R e−αL)

4αR[1 + Fα sin2{kL(n0 + T (u, τ ) dn/dT }] ≡ A(u, τ)Ii(u). (3.5)

In general A(u, τ) depends on u and τ only through the dependence of α and n on T (u, τ ).
This includes the case of negligible finesse (e.g. for Ce:SBN), in which equation (3.5) reduces
to the single-pass absorbed intensity, Iabs(u, τ ) = Ii(u)(1 − e−α(u,τ)L)(1 − R)αa/α and the
cases of BNN, PMN and PLZT where α and αa may be taken as constant over the relevant
temperature range. In the case of systems with negligible finesse, such as Ce:SBN, the actual
temperature profile is given by equations (3.1) and (3.2), but for PMN and PLZT solution of
the nonlinear system of equations (3.3) and (3.5) is required. BNN is discussed below.

O’Sullivan et al (1996b) presented smoothed solutions of equations (3.3) and (3.5)
obtained by replacing A(u, τ) by the constant absorption factor As , equal to the average of
A(u, τ) on a time scale large compared to tK . In this paper we present solutions which include
the effect of the spatio-temporal dependence of A(u, τ). We have solved equations (3.3) and
(3.5), with the initial condition T (u, 0) = 0, by two methods:

(i) numerically by the finite element method for a disc of finite radius and
(ii) analytically for a disc of infinite radius.

Figure 9(a) shows the finite element solution for T (u, τ ) obtained for experimental
parameter values for monocrystalline PMN: ρ = 8120 kg m−3 (Landolt–Börnstein 1961),
c = 335 J kg−1 K−1 (Scott and Chen 1992), R = 0.20, α = 120 m−1 (hence Fα = 1.1),
n0 = 2.65 for λ = 514.5 nm, disc radius = 1.5 mm, (dn/dT )/n = 9 × 10−5 K−1 and
(dL/dT )/L = 6 × 10−6 K−1 over the temperature range 280–320 K (Korshunov et al 1992,
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Figure 9. (a) Temperature evolution for a 0.74 mm thick PMN crystal under steady 295 mW
irradiation with a beamwidth of 28µm at 514.5 nm, as given by the finite element model. (b) Steady
state axial temperature versus sample radius. The dotted line shows the infinite disc approximation.

Chen et al 1994) and H = 22.5 W m−2 K (O’Sullivan et al 1996b). The values of K and
αa have not been directly measured. The values K = 0.65 W m−1 K−1 and αa/α

∼= 0.3
used in plotting figure 9(a) and later figures in this paper were determined by fitting analytic
steady state solutions to experimental results (O’Sullivan et al 1996b) and the value of K

so determined agrees well with that of other ABO3 perovskites. As expected on the basis
of the two time scales which occur in equation (3.1), figure 9(a) shows that the temperature
equilibrates with an overall timescale tc through a sequence of metastable states separated by
jumps with the much shorter timescale tK .

Figure 9(b) compares the steady state axial temperature for an infinite radius disc, given
by equation (3.1), with that for a finite disc as a function of radius, using the same smoothed
absorption factor As , based on equation (9) of O’Sullivan et al (1996b):

T (u) = T (0)I0(µu)

+
2A∞P

πLK

{
K0(µu)

∫ u

0
du′ u′I0(µu′) e−2u′2 − I0(µu)

∫ u

0
du′ u′K0(µu′) e−2u′2

}
(3.6)

where

T (0) = (2A∞P/πLK)

{
[K1(µb′) − (Lµ/2w)K0(µb′)]/[I1(µb′) + (Lµ/2w)I0(µb′)]

×
∫ b′

0
du′ u′I0(µu′) e−2u′2

+
∫ b′

0
du′ u′K0(µu′) e−2u′2

}
b = b′w = disc radius, A∞ = steady state absorption factor and K0, K1, I0 and I1 are
modified Bessel functions of the second and first kinds respectively. Although edge effects
lead to an underestimation of temperature for small samples, figure 9(b) shows that they are
insignificant above a radius of 6–8 mm for a typical experimental beamwidth. Hence, in order
to investigate the parameter dependence of the time-dependent solution of equations (3.3) and
(3.5), it is useful to investigate their solution for an infinite disc.

Taking the Hankel transform of equation (3.3), we obtain

∂T̃ /∂τ = −(s2 + µ2)T̃ + Ipw
2G(s, τ )/LK (3.7)
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where, T̃ (s, τ ) = ∫ ∞
0 du uJ0(su)T (u, τ ), J0 is a Bessel function of order zero and

G(s, τ ) =
∫ ∞

0
du uJ0(su) exp(−2u2)A(u, τ ).

A(u, τ ) depends on (u, τ ) via its dependence on T (u, τ ) = ∫ ∞
0 ds sJ0(su)T̃ (s, τ ). Proceeding

formally, equation (3.7) with the initial condition T̃ (s, 0) = 0 is equivalent to an integral
equation for T̃ (s, τ ):

T̃ (s, τ ) = (Ipw
2/LK) exp{−(s2 + µ2)τ }

∫ τ

0
dτ ′ G(s, τ ′) exp(s2 + µ2)τ ′. (3.8)

Taking the inverse Hankel transform, we obtain an integral equation for T (u, τ ):

T (u, τ ) = Ipw
2

LK

∫ τ

0
ds sJ0(su)

∫ τ

0
dτ ′ e(s2+µ2)(τ ′−τ)

∫ ∞

0
du′ u′J0(su

′) e(−2u′2)A(u′,τ ′). (3.9)

Reversing the order of integration, we obtain

T (u, τ ) = Ipw
2

LK

∫ τ

0
dτ ′ eµ2(τ ′−τ)

∫ ∞

0
du′ u′ e(−2u′2)A(u′,t ′)

∫ ∞

0
ds sJ0(su)J0(su

′) es2(τ ′−τ).

The s integral has the form of Weber’s second exponential integral (Watson 1966) so that
T (u, τ ) can be expressed as a double integral:

T (u, τ ) = Ipw
2

LK

∫ τ

0
dτ ′ eµ2(τ ′−τ)

∫ ∞

0
du′ u′ e

(−2u′2)A(u′,t ′)

2(τ − τ ′)
exp

{
− u2 + u′2

4(τ − τ ′)

}
I0

{
uu′

2(τ − τ ′)

}
.

Changing the variable in the time integral to ν = τ − τ ′ gives

T (u, τ ) = Ipw
2

2LK

∫ τ

0

dν

ν
e(−µ2ν)

∫ ∞

0
du′ u′A(u′, τ − ν) exp

(
−2u′2 − u2 + u′2

4ν

)
I0

(
uu′

2ν

)
.

(3.10)

Equation (3.10) can also be obtained using the ζ -independent limit of the Green function in
equation (A.7).

Equation (3.10) is a double integral equation of Volterra type in τ and of Fredholm type in
u and is a special case of the equation quoted by Corduneanu (1991). As Corduneanu points
out, it may be treated as a Volterra integral equation of the second kind if we regard T (u, τ ) as a
variable whose values are functions defined on 0 < u < ∞. Hence we may apply the standard
theorems on existence and uniqueness of solutions of Volterra integral equations. In particular,
for a wide range of functions A(u, τ) representing absorptive and/or dispersive nonlinearities,
the integrand of equation (3.10) satisfies the conditions for the existence of a unique solution.
Hence any valid solution found numerically is the unique solution. There is a distinct advantage
in solving the integral equation (3.10) instead of the partial differential equation (3.3) since the
smoothing property of integration means that less stringent regularity conditions are required
of trial solutions of integral equations and numerical solution algorithms are less prone to
numerically generated errors.

Figure 10(a) shows a contour plot of T (u, τ ) obtained by numerical solution of
equation (3.10) using the method of Tonelli (1928) (see below) for typical parameter values.
This solution agrees with that obtained by the finite element method (e.g. see figure 9(a)
subject to the correction given in figure 9(b) for sample radii <6 mm. Figure 10(a) shows
that switching waves, as described by Rozanov (1981), do not occur in these systems. This
is because the low Fresnel number satisfies the condition of Moloney and Gibbs (1982) for
‘whole beam switching’.
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Figure 10. (a) Temperature contours as a function of radius (horizontal axis, 0 to 2 beamwidths)
and time (vertical axis, 0 to 30 ms), given by equation (3.10). (b) Temperature contours given by
equation (3.12) using the loci defined by equation (3.11).

The essential features of the solution for moderate incident laser power can, however, be
computed more rapidly by reducing the right-hand side of equation (3.10) to a single integral
as follows. Firstly we note that equation (3.10) contains the temporal convolution of the
oscillating function A(u′, τ − ν) with a kernel which has a single maximum for each point in
the ν–u′ plane. Since I0(x) ∼ ex(2πx)−1/2 as x → ∞, it is useful to reformulate the kernel
as

u′

ν
exp

{
−µ2τ ′ − 2u2

8ν + 1
− 2

(
1 +

1

8ν

) (
u′ − u

8ν + 1

)2
}

exp

(
−uu′

2ν

)
I0

(
uu′

2ν

)
.

For fixed u and ν, the function e−xI0(x) with x = uu′/2ν decreases from a maximum value
of 1 as u′ increases from 0 and asymptotes to 1/

√
2πx as x → ∞ (Abramowitz and Stegun

1964). Hence as ν increases from zero for each fixed u, the kernel evolves monotonically from
a delta function located at u′ = u to an approximately Gaussian window of unit width and
decreasing height with its peak at u′ = 0.5.

The value of the integral differs qualitatively in three distinct regimes determined by
the temperature difference across the beamwidth, ETw = T (0, τ ) − T (1, τ ), given by
equations (3.1) and (3.6), which is approximately the same for the smoothed and the stepped
temperature profiles for τ > 1

(i) For ETw < π/2kL(dn/dT ), A(u′, τ −τ ′) varies by less than half a cycle across the width
of the convolution window for all u and τ ′, hence the u′ integral in equation (3.10) is
dominated by the value of A(u′, τ − τ ′) at the peak of the window. The locus u′ = up(τ

′)
of this peak in the τ ′–u′ plane for fixed u is given by the solution of the transcendental
equation:

{1 − 4(1 + 1/8τ ′)u2
p}I0(uup/2τ ′) + (uup/2τ ′)I1(uup/2τ ′) = 0. (3.11)

Representative loci are shown in figure 11(a). Note that up(0) = u and up(∞) = 0.5 for
all u. On replacing A(u′, τ − τ ′) by A{up(τ

′), τ − τ ′}, the u′-integral in equation (3.10)
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Figure 11. (a) Loci of the peak of the kernel in equation (3.10) in the u′, τ ′ plane. The loci start
at u′ = 0, 0.3, 0.5 and 2. (b) Heat source term u′A(u′, τ − τ ′) exp(−2u′2) for three representative
values of the Fabry–Pérot phase. The dotted lines show the maximum and minimum FP absorption
envelopes. Parameters as in figure 8(a).

can be evaluated using equation (A.9) to give

T (u, τ ) = Ipw
2

LK

∫ τ

0

dτ ′

1 + 8τ ′ A{up(τ
′), τ − τ ′} exp

(
− 2u2

1 + 8τ ′ − µ2τ ′
)
. (3.12)

From a physical viewpoint, as τ ′ increases the temporal convolution integral in
equations (3.10) and (3.12) contains the effects of
(a) the instantaneous absorption rate at (u, τ ) (for τ ′ = 0), plus
(b) the absorption rate for u′ between u and 0.5 over recent time (for τ ′ small) and
(c) the absorption rate at u′ = 0.5 (at which absorption is maximum for τ ′ large) over

earlier times.
(The kink in loci starting from u ≈ 0.5 is due to the contribution of the outward radial
heat flux.) Note that the contours in figure 10 are approximately parallel to the u′ axis for
0 � u′ � 0.25. Hence A{up(τ

′), τ − τ ′} ≈ A{0, τ − τ ′} for u < 0.5.
(ii) For 2π/kL(dn/dT ) � ETw � π/2kL(dn/dT ), A(u′, τ − τ ′) oscillates a few times

across the convolution window for τ ′ � 1 and u < 2. For the experimental parameters
given above, there are less than two oscillations as shown in figure 11(b). The u′-integral
oscillates approximately in phase with A{up(τ

′), τ − τ ′} but the amplitude of oscillation
is less than in regime (i). Hence the temporal evolution of the radial integral is similar to
that in regime (i) but with Amax replaced by Amax{1−ε/(1+1/2τ ′)} and Amin replaced by
Amin{1 + ε/(1 + 1/2τ ′)} for some ε where 0 < ε < 1. For an incident power of 295 mW,
figure 10(b) shows the temperature contours given by equation (3.12) with ε = 0.15 based
on figure 11(b). These contours are similar to those in figure 10(a) given by equation (3.10),
with only a slight shift in switching times for small values of τ .

(iii) For ETw � π/kL(dn/dT ), the Laplacian terms in equations (2.10) and (2.11) may no
longer be neglected as the length of the beam waist becomes �L and the wavefronts of
the beam become highly curved. Hence the iterative approach outlined in section 2 is no
longer valid. As the incident power increases, symmetry breaking occurs and non-circular
patterns are generated in the transmitted and reflected beams as described elsewhere (Scott
and O’Sullivan 1996, Scott et al 1996). For BNN, this is the case even for low incident
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power values since dn/dT is very large (approximately 0.1). Since the condition for
Fabry–Pérot resonance is not satisfied simultaneously over a significant radius, however,
there is no longer a significant temporal variation in the average absorption factor. Hence,
the evolution of the central irradiance and total power can be obtained by substituting the
smoothed temperature profile of equation (3.1) into equations (2.10) and (2.11) as in the
case of negligible finesse.

To investigate the time dependence of the axial temperature, we use the fact that for u = 0 and
ETw < π/kL(dn/dT ), A(u′, τ − τ ′) ≈ A(0, τ − τ ′) within the convolution window. Making
this substitution in equation (3.12), changing the variable to τ ′′ = τ − τ ′ and replacing τ ′′ by
τ ′, we obtain

T (0, τ ) = 2P

πLK

∫ τ

0

dτ ′

1 + 8(τ − τ ′)
exp{−µ2(τ − τ ′)}A(0, τ ′) ≡

∫ τ

0
M{τ, τ ′, T (0, τ ′)} dτ ′.

(3.13)

For a general temperature dependent absorption factor, this is a nonlinear Volterra integral
equation of the second kind. Equation (3.13) has a unique solution, provided the integrand
satisfies the Lipschitz condition |M(τ, τ ′, T )−M(τ, τ ′, T ′)| � L(τ, τ ′)|T −T ′| for 0 � τ ′ �
τ < ∞ for some function L(τ, τ ′)—see for example theorem 2.1.1 of Hackbusch (1995).
In particular this condition is satisfied by A(0, τ ) defined in equation (3.5). The solution is
bounded from above by a super-solution and from below by a sub-solution, which may be
found analytically by replacing A(0, τ ) in equation (3.13) by Amax and Amin respectively. In
principle the unique solution of equation (3.13) can be found by the iterative technique used
in the existence proof which we described previously (O’Sullivan et al 1996b). In general,
however, the iterative solution is slow to converge. A much more rapidly converging algorithm
which yields the solution with arbitrary accuracy is Tonelli’s method, in which a sequence of
approximate solutions Tn(0, τ ) is constructed by partitioning the τ -axis into n intervals and
estimating Tn(0, τ ) on each interval from its values on the preceding intervals (Tonelli 1928).

Numerical evaluation of equations (3.12) and (3.13) by the Tonelli method is shown in
figures 12(a) and 12(b). In contrast to the smoothed solution of O’Sullivan et al (1996b),
this solution shows aperiodic jumps in T (u, τ ) with amplitude decreasing as u increases,
in agreement with the finite element solution shown in figure 9(a). Although the effective
finesse in equation (3.12) in regime (ii), without the adjustment of Amax and Amin described
above, would be greater than in the exact solution (given by the finite element method and by
equation (3.10)), this would only alter the steepness of the aperiodic temperature jumps and not
their height. Significantly the temperature jumps are of equal height ETj = π/kL(dn/dT )

after about 0.01 s, consistent with the similarity of the jumps in central irradiance and total
power of the experimental far field transmitted light pattern shown in figure 2(a) and Chen and
Scott (1993b). Figure 12 shows thatT (0, τ ) increases slowly whileA{T (0, τ )} is nearAmin and
rapidly when it is close to Amax . Matching the smoothed temperature profile of equation (3.1)
withPabs = PAs to the stepped profile in figure 12(b) shows thatAs ≈ Amin+0.2(Amax+Amin).

4. Thermo-optic bistability

4.1. Bistability curves for Gaussian irradiation

Chen and Scott (1993b) have published experimental bistability curves for the steady state
power transmitted and reflected by a ceramic PMN sample as a function of incident power—
figure 5(a). These differ from traditional bistability curves, such as the bistability curve of
temperature against input power obtained in the plane wave thermo-optic case and plots of
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Figure 12. (a) Temperature evolution for a 0.74 mm thick PMN crystal under steady 295 mW
irradiation with a beamwidth 28 µm at 514.5 nm, as given by equation (3.12). The dashes indicate
the temperature at which maximum absorption occurs. From the top, the curves correspond to r = 0,
9, 17 and 26µm. Other symbols are explained in section 3.2. (b) Central temperature for parameters
as (a), over a longer time scale. The dotted lines show the temperature envelope corresponding to
maximum and minimum Fabry–Pérot absorption factors Amax and Amin respectively. The dashed
line shows the smoothed solution for As = Amin + 0.2(Amax − Amin) = 52.5 × 10−3.

output power against input power for one-dimensional non-diffusive OB, which have a wedge-
shaped envelope, so that the width of the hysteresis loops increases monotonically with the
control variable. In contrast, the hysteresis loops for Gaussian heating of ferroelectrics have
approximately constant width over a wide range of incident power, as shown qualitatively by
Chen et al (1994).

The steady state bistability curve can be obtained from the inverse Hankel transform of
equation (3.7) with ∂T̃ /∂τ = 0, which gives an integral equation for T (u,∞):

T (u,∞) = Ipw
2

LK

∫ ∞

0

ds s

s2 + µ2
J0(su)

∫ ∞

0
du′ u′J0(su

′) exp(−2u′2)A(u′,∞).

The s integral can be evaluated with u = 0 to give (Abramowitz and Stegun 1964)

T (0,∞) = (2P/πLK)

∫ ∞

0
du uK0(µu) exp(−2u2)A(u,∞). (4.1)

Assuming that T (u,∞) has the same u-dependence as the smoothed solution (see section 5),

T (u,∞) = T (0,∞){1 + Ein(2u2)/ ln(w2H/4LK)} ≡ T (0,∞)ψ(u) on 0 � u < 2/u

equation (4.1) becomes

T (0,∞) = 2PAmax

πLK

∫ ∞

0
du

uK0(µu) exp(−2u2)

1 + Fα sin2[kL{n0 + T (0,∞)ψ(u) dn/dT }] ≡ PI{T (0,∞)}
(4.2)

where the function I{T (0,∞)} is independent of P , oscillates with decreasing amplitude
as T (0,∞) increases and can be determined by numerical integration for given values of k,
w, H , L, K and dn/dT . Hence a plot of T (0,∞) against P gives an S-shaped bistability
curve within a lenticular envelope as shown in figure 5(b) for the parameter values given in
section 3.2. Since the transmitted amplitude is ET (u, 0.5) = T EF (u, 0.5) where T ′ (is the
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Figure 13. (a) Bistability in transmission and reflection coefficients versus incident power in
0.43 mm PMN ceramic (Chen and Scott 1993a, b). (b) Transmission and reflection resulting from
the temperature curve in figure 5(b).

amplitude transmission coefficient for light leaving the sample, solution of equations (2.10)
and (2.11) under the conditions described in section 3 gives the power transmitted by the
sample:

PT = P {2α(1 − R)/αaπ(eαL − 1)(1 + R e−αL)}
∫ ∞

0
du u exp(−2u2)A(u,∞). (4.3)

The integral on the right-hand side of equation (4.3) is an oscillating function of T (0,∞)

with local maxima and minima at the same values of T (0,∞) as on the right-hand side of
equation (4.2). Furthermore, since µu � 1 for u < 2, K0(µu) varies logarithmically with
u across the window defined by u exp(−2u2) (Abramowitz and Stegun 1964) and therefore
equations (4.2) and (4.3) imply that T (0,∞) is approximately proportional to PT :

T (0,∞) ≈ PTK0(µ/2)αa(e
αL − 1)(1 + R e−αL)/α(1 − R)LK. (4.4)

Hence the theoretical bistability plot for T (0,∞) closely matches the experimental bistability
curve for transmitted power in ceramic PMN (Chen and Scott 1993b), reproduced in figure 5(a).
Substituting for T (0,∞) from equation (4.4) into equation (4.2) gives a close match to
the experimental hysteresis curves for the transmission coefficient PT /P and the reflection
coefficient (1 − PT /P ), as shown for ceramic PMN in figure 13. In the case of PLZT,
equation (4.1) predicts multistability, which is confirmed experimentally as shown in figure 14.
In the plane wave case, bistability leads to hysteresis and jumps in the transmitted and reflected
beam intensities as the incident power is slowly ramped up or down, but the bistability is purely
longitudinal. In the case of an incident Gaussian beam, thermo-optic bistability due to Fabry–
Pérot resonance also gives rise to transverse optical bistability in the transmitted and reflected
beams as observed by Chen and Scott (1993b) (see section 5 below). Relaxation oscillations
in the transmitted and reflected beam intensities are observed in PMN and PLZT where the
coefficient of finesse is of order 1, but not in Ce: SBN where Fα < 10−4 nor in BNN where
the phase shift varies rapidly with u.

The relationship of the aperiodic temperature jumps following laser switch-on to the
longitudinal bistability of the Fabry–Pérot cavity can be shown qualitatively as follows. The
function T (0, τ ) defined by equation (3.13) depends on its values at times earlier than τ

via the function A{T (0, τ ′)}. However the integrand decays to zero as τ ′ increases. Since
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Figure 14. Bistability curve of transmitted power versus incident power in a 0.32 mm thick PLZT
sample with a beam diameter of 40 µm and λ = 514 nm. Experimental data points are matched
by the theoretical curve calculated using equation (4.2).

A{T (0, τ ′)} ≈ As except during jumps of duration Eτ ≈ 1, we approximate the right-hand
side of equation (3.13) by replacing A{T (0, τ ′)} by A{T (0, τ )} on 0 � τ ′ < Eτ and by As on
Eτ � τ ′ < ∞, which gives

T (0, τ ) ≈ 2P

πLK

{
A(0, τ )

∫ Eτ

0

dτ ′

1 + 8τ ′ exp(−µ2τ ′) + As

∫ τ

Eτ

dτ ′

1 + 8τ ′ exp(−µ2τ ′)
}

i.e.

T (0, τ ) ≈ Ts(0, τ ) + [{A(0, τ )/As} − 1]Ts(0,Eτ).

Hence

{T (0, τ ) − Ts(0, τ ) + E1}[1 + Fα sin2{kL(n0 + T (0, τ ) dn/dT )}] = E2 (4.5)

with

E1 = AmaxP ln(1 + 8Eτ)/4πLK

and

E2 = AsP ln(1 + 8Eτ)/4πLK

where we have used the small argument approximation E1(x) ∼ − ln x − γ ′ (where
γ ′ = Euler’s constant) in equation (3.2) since tK/8tc = w2H/4LK is of order 10−5.

Graphical solution of equation (4.5) gives a multi-branched bistability curve for T (0, τ )
bounded by the curves Ts(0, τ ) + E2 − E1 and Ts(0, τ ) + E2/(1 + F) − E1 with aperiodic
thermal switches between branches as shown in figure 15. Since T (0, τ ) has an upper bound,
there is a finite number of thermal switches which occur at increasing time intervals.

4.2. Switching times for thermo-optic bistability

Equation (3.2) gives an analytic expression for the smoothed axial temperature Tsm(0, τ ).
Comparison with either the finite element solution or the integral equation solution of
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Figure 15. Bistability curve of T versus t from equation (4.5). The upper and lower envelopes are
given in the text.

equations (3.10) and (3.12) shows that Tsm(0, τ ) differs by π/(kL dn/dT ) at adjacent thermal
switches which occur at the maxima of A{T (0, τ )} (e.g. see figure 12(b)). Hence, to within
an additive uncertainty given by the initial detuning, the switching times τm are given by

Tsm,m(0, t) = mπ

kL dn/dT
= AsP

4πLK
exp

(
tK

8tc

) [
E1

(
tK

8tc

)
− E1

{
tK

8tc
(1 + 8τm)

}]
for m = 1, 2, 3, . . . . (4.6)

Since E1(x) → 0 as x → ∞ there is a finite number M of thermal switches given by

Mπ

k dn/dT
= AsP

4πK
exp

(
tK

8tc

)
E1

(
tK

8tc

)
≈ − AsP

4πK

[
ln

(
w2H

4LK

)
+ γ ′

]
(4.7)

where we have used the small argument approximation for E1(x). Using the same
approximation, equation (4.6) remains a transcendental equation for τm in general:

mπ

k dn/dT
= − AsP

4πK

[
ln

(
tK

8tc

)
+ γ ′ + E1

{
tK

8tc
(1 + 8τm)

}]
. (4.8)

Since equation (4.6) is based on the infinite disc solution, the value ofM given by equation (4.7)
must be corrected in accordance with figure 9(b) for samples of radius <6 mm. Note that τm
is insensitive to the value of H for the early jumps, but the timing of the later jumps is highly
sensitive to the flow velocity of the atmosphere surrounding the sample via the H -dependence
of tc. This is important for the sensing application described by Scott and Chen (1992).

Equation (4.8) can be compared with the empirical formula for the switching times in
ceramic PMN reported by Scott and Chen (1992). In the present notation, they found that tm
for the last few switching events could be fitted to the formula

tm = tnP/{P − (m − n)P0} (4.9)

where tn is the time of the first switching event observed on the macroscopic timescale andP0 =
constant. Equation (4.9) follows from equation (4.8) under the approximation E1(x) ≈ 1/4x
in the range 0.1 < x < 1. A more accurate rational approximation E1(x) ≈ 0.33/(x + 0.075)



R220 R A O’Sullivan et al

0.0 0.1 0.2 0.3 0.4 0.5 0.6
INCIDENT POWER (W)

0

1

2

3

4

5

6

7

SW
IT

C
H

IN
G

 T
IM

E
S 

(s
)

N=1 N=10

Figure 16. Aperiodic switching times in PMN. The data points are the times from laser switch-on
for experimental switching events in 0.43 mm ceramic PMN for indicated values of incident laser
power given in Chen et al (1992). The theoretical curves are given by equation (4.6) for the
experimental parameter values. N = switching event number.

for 0.01 < x < 0.3 gives the empirical formula tm = {A1(P ) + mA2}/(P −mP0), which was
fitted to the experimental switching times plotted by Chen et al (1992). Hence their empirical
fitting parameters are related to the experimental parameters as follows:

P0 = 2πλK

As dn/dT

{
exp

(
w2H

4LK

)
E1

(
w2H

4LK

)}−1

A2 = 0.075ρcL

2H
P0

A1(P ) = ρcL

2H

[
0.33

{
exp

(
w2H

4LK

)
E1

(
w2H

4LK

)}−1

− 0.075

]
P. (4.10)

Figure 16 compares the switching times given by equation (4.8) and the experimental data
shown in figure 7 of Scott and Chen (1992). In both that figure and figure 16, there is a zero
shift of 20 mW in incident power, due to a combination of initial detuning and stray light. It is
known that K varies with temperature in the vicinity of the ferroelectric phase transition for
the perovskites lead titanate and barium titanate (Mante and Volger 1967, Yoshida 1960) but
no data have been published on K(T ) for PMN or PLZT. In PMN dn/dT is approximately
constant over the experimental temperature range (Korshunov et al 1992). Figure 16 shows a
close fit between experimental switching times and our constant K model for incident power
below about 300 mW, but at higher power the experimental switching times for the highest
values of m are delayed relative to the predictions of this model. This is consistent with a dip in
the K(T ) curve at higher temperature (30–40 degrees above ambient), which causes reduced
cooling and hence greater curvature in the central region of the smoothed plot of temperature
against time. Hence we conclude that for ceramic PMN, K(T ) goes through a local minimum
at the phase transition as in related ferroelectrics (Nettleton 1970). Furthermore this suggests
a new optical method for measuring the temperature dependence of thermal conductivity in
the vicinity of a phase transition, distinct from the method of Burkhart and Rice (1977).
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5. Transmitted and reflected beam patterns

Although the zeroth order expression for Ic given by equation (3.4) is sufficiently accurate
to determine the azimuthally averaged temperature profile, as well as the temporal variation
of the total transmitted power, it does not contain sufficient information on the phase and
amplitude variation of the intracavity beam to determine the radial profile of the transmitted
and reflected beams in the near or far field. In order to determine these, we must obtain the
first order iterative solution for the light fields of the forward and backward travelling waves
within the resonator by solving equations (2.10) and (2.11) using the zeroth order solution for
the temperature profile given by equations (3.10) or (3.12).

In the steady state, analytical expressions for the near and far field radial irradiance
distribution of the transmitted and reflected beam patterns can be obtained by solving
equations (2.10) and (2.11) using the steady state temperature profile in the nonlinear phase
terms ik{n0 + (dn/dT )T (u, τ )}. In the region of the beamwidth, it follows from equation (3.6)
that the radial dependence of the temperature profile is independent of the disc radius as follows.

For u � 2, µu � 0.02 and hence we can use the ascending series
approximations (Abramowitz and Stegun 1964): I0(x) ∼ 1 + x2/4 + · · · and K0(x) ∼
−{ln(x/2) + γ ′}I0(x) + x2/4 + · · · in equation (3.6) to obtain T (u) ∼ T (0)I0(µu) +
(2AsP/πw2LK)

∫ u

0 du′ u′ ln(u′/u) exp(−2u′2).
Integration by parts gives

T (u) ∼ T (0)I0(µu) + (AsP/2πLK)

∫ u

0
du′ {1 − exp(−2u′2)}/u′

Hence T (u) ∼ T (0)(1 + µ2u2/4) − AsPEin(2u2)/4πLK where Ein(x) ≡ ln x + γ ′ + E1(x)

(Abramowitz and Stegun 1964). Ein(x) has the ascending series
∑∞

n=1(−1)n+1xn/nn! and,
for typical experimental parameters, AsP/2πLKw2 is four orders of magnitude greater than
µ2T (0)/4 so that T (u) has the parabolic approximation:

T (u) ∼ T (0) − AsPu2/2πLK for u � 0.5.

Although T (0) depends on the disc radius, the temperature gradient is independent of disc
radius for u � 0.5.

To solve equations (2.10) and (2.11) in the ‘paraxial approximation’ u2 � 1, with the
parabolic approximation for T (u), we use the eikonal ansatz (Ghatak and Thyagarajan 1978,
following Akhmanov et al 1968b):

E(u, ζ ) = E0(u, ζ ) exp{ikn0ζ + ikn0S(u, ζ ) − αζ/2}L
with S(u, ζ ) = u2β(ζ )/2 + φ(ζ ) (5.1)

which must satisfy equation (2.10) on the interval 0 � ζ < ∞ with the boundary condition
E(u, 0) = T Ei(u, 0). EF (u, ζ ) and EB(u, ζ ) are obtained from E(u, ζ ) by means of a
multiple beam expansion as in the case of an incident plane wave:

EF (u, ς) =
∞∑
j=1

EFj (u, ς) and EB(u, ς) =
∞∑
j=1

EBj (u, ς)

where EFj (u, ς) = Rj−1E(u, 2j − 2 + ς) and EBj (u, ς) = Rj−1/2E(u, 2j − ς) for
j = 1, 2, 3, . . ..

The transmitted and reflected beams are therefore given by

ET (u) = T ′
∞∑
j=1

Rj−1E(u, 2j − 1) (5.2)
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ER(u) = −
√
REi(u) + T ′

∞∑
j=1

Rj−1/2E(u, 2j) (5.3)

where T ′ is the amplitude transmission coefficient for light leaving the sample. In the case of
negligible finesse, only the first terms on the right-hand side of equations (5.2) and (5.3) are
required.

Substituting the ansatz (5.1) into equation (2.10) gives

E0(u, ς) = Ep exp{−u2/f 2(ς)}/f (ς) β(ζ ) = w2f ′(ζ )/L2f (ζ )

φ′(ζ ) = T (0)(dn/dT )/n0 − 1/{2k2n2
0w

2f 2(ς)} (5.4)

where

2f 2(ς) = 1 + (QG)−1 + {1 − (QG)−1} cos(2L
√
Gς) (5.5)

Q = 4k2n2
0w

4, G = AsP (dn/dT )/πw2LKn0 and Ep is the amplitude of the incident beam
at u = 0. This result differs from that of Ghatak and Thyagarajan in two ways. Firstly
we have used the temperature profile averaged over sample thickness rather than T (u, ζ ).
Secondly they obtain the solution for f (ζ ) in the defocusing case, in which oscillation
of the beam radius does not occur; in the thermal focusing case, however, equation (5.5)
shows that the effective beamwidth of the forward beam oscillates periodically in z as
first pointed out by Wagner et al (1968). The self-trapping condition, under which self-
focusing just balances diffraction, is given by QG = 1, which gives the critical power for
self-trapping as Pc = πLK/4k2w2Asn0(dn/dT ). For the parameter values of our PMN
experiments, QG ≈ 102 � 1 so thermal focusing dominates over diffraction. The beamwidth
decreases from the incident value w to its first minimum (with beamwidth w/

√
QG) at

z = π/2
√
G = 2.2 mm. For a sample thickness of L = 0.74 mm, the beamwidth at the

rear face is 0.86w.
Although the parabolic phase ansatz in equation (5.1) is reasonable in the paraxial

approximation, we show below that it significantly overestimates the phase variation for
u � 0.5 and hence is unsuitable for determining the radial dependence of the far field
transmitted beam pattern in the case of thermo-optic nonlinearity. To obtain a better
approximation for the radial phase profile of the intracavity beam, we need a more physically
realistic phase ansatz. Since the phase of the beam is determined, according to equation (2.4),
by n(u) = n0(1 + χT (u)), an appropriate phase ansatz is the function Ein(2u2), which
accurately describes the temperature profile for u � 2. In appendix B we solve equation (2.10)
using the ansatz

S(u, ζ ) = β(ζ )Ein(2u2) + φ(ζ ) (5.6)

to obtain the resultβ(ζ ) = −w2g′(ζ )/8L2,φ′(ζ ) = 2{1−2 eg(ς)}/k2n2
0w

2+T (0)(dn/dT )/n0,
and hence

E0(u, ς) = EP exp 1
2 {−g(ς) − 2u2}/[1 + {e−g(ς) − 1} exp(−2u2)] (5.7)

where g(ζ ) satisfies the equation

g′2(ς) = 4A∞PL

πKn0w2

dn

dT
g(ς) − 16L2{g(ς) − 12 eg(ς) + 6 e2g(ς) + 6}

k2n2
0w

4
. (5.8)

Equation (5.8) is the equation of a nonlinear oscillator with ‘kinetic energy’ g′2(ς),
‘total energy’ W = −96L2/k2n2

0w
4, ‘potential energy’ V (g) = 16L2(g − 12 eg +

6 e2g)/k2n2
0w

4 − 4A∞PLg(dn/dT )/πLKn0w
2 and the initial conditions g(0) = 0 = g′(0).

Putting V ′(g) = 0 shows that V (g) has a single real minimum at g = ln[ 1
2 {1 +√

2
3 (1 + n0k2w2A∞P(dn/dT )/8πLK)}]. Hence g(ζ ) oscillates between 0 and its maximum
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Figure 17. Comparison of the phase factor Ein(2r2/w2) with the parabolic (paraxial)
approximation.

value gmax (given by V (g) = W ) as ζ increases. Therefore the amplitude and phase terms
given in equations (5.6) to (5.8) also oscillate periodically in ζ , as in the paraxial approximation
(equations (5.4) and (5.5)). Solving equation (5.8) numerically and substituting for g(ζ ) in
equation (5.7) shows that, for the parameter values of our experiments, the amplitude and
beamwidth deviate only slightly from those given by the paraxial approximation but the radial
phase factor in equation (5.6) is significantly less steep than the parabolic factor in equation (5.1)
in the range 0.5 � u � 2, reflecting the decrease in slope of the temperature profile in that
region (see figure 17).

In both the paraxial approximation and the Ein(2u2) approximation, the beamwidth
of the first transmitted beam decreases by only 10–15% across typical PMN and PLZT
samples and equations (3.6) and (3.12) show that the central temperature is only a logarithmic
function of beamwidth, being approximately proportional to absorbed power irrespective of
beamwidth. Hence the assumption of a cylindrical Gaussian heat source in section 3 is self-
consistent.

Substituting equations (5.6)–(5.8) into equations (5.2) and (5.3) gives the amplitude and
phase of the transmitted and reflected beams in the near field. By computing the squared
modulus of the Fourier transform of these patterns, we obtain the theoretical transmitted
and reflected far field irradiance patterns, which closely match the experimental ones. For
example figure 18 compares the experimental and calculated far field steady state irradiance
patterns for the beam transmitted from a PMN sample of thickness 1.4 mm with incident
beamwidth of 78 µm and given values of incident beam power, showing the same number
of rings and angular diameter in the experimental and theoretical patterns. Since R = 0.20
for PMN, the series (5.2) and (5.3) converge rapidly as shown by figure 18. It should be
noted that, although the Fabry–Pérot effect is responsible for the thermo-optic bistability
which causes the aperiodic jumps in beam profiles, the primary ring patterns in those
profiles are caused by the temperature-induced radial phase variation of the first-pass beams
EF1(u, ζ ) and EB1(u, ζ ) (i.e. they are due to thermal focusing) rather than by Fabry–Pérot
interference.
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Figure 18. Far field beam patterns transmitted by a 1.4 mm PMN crystal illuminated via a 40 cm
focal length lens; experimental photographs in top row, theoretical plots in middle and bottom rows.
The middle row contains patterns produced by the first pass through the crystal; the bottom row
shows the patterns after five passes through the crystal. Incident power from left to right: 100 mW,
200 mW, 300 mW and 400 mW.

For radial symmetry, the full spatio-temporal variation of the light fields for a thin sample,
following rapid laser switch-on, can be obtained by numerical solution of equations (2.10) and
(2.11) with the appropriate time-dependent temperature profile. For materials with negligible
bistability, such as Ce:SBN and BNN, we use equation (3.1) and for bistable materials with
finesse of order 1, such as PLZT and PMN, we use equation (3.10) or (3.12) or the finite
element solution of equations (3.3) and (3.5) shown in figure 9(a).

Figure 2 shows experimental plots of central and total transmitted intensity from a
PMN sample, compared with plots computed using equation (5.7) for the amplitude and
equation (3.12) for the time dependent phase factor of the near field transmitted beam. Figure 3
shows experimental plots of central intensity transmitted from a Ce:SBN ceramic sample,
compared with plots computed using equation (5.7) for the amplitude of and equation (3.1)
for the time dependent phase factor.

The main features of the evolution of the light fields towards their steady state radial
patterns can be understood from the fact that, after a brief initial transient phase, i.e. for
tc � t � tK , T (u, τ ) evolves through a sequence of quasi-stationary states separated by rapid
jumps. Examination of the plots of T (u, τ ) in figures 9(a) and 12(a) shows a characteristic
cyclic variation of the temperature gradient within the region of the laser beam (for say u < 2),
superimposed on the overall gradual relaxation of the temperature to its steady state profile
(see figure 19).

(i) Between jumps the axial absorption factor A(0, τ ) is near its minimum Amin, ∂T /∂τ ≈ 0
and 2HT (0, τ ) < 2HTst (0) is more than three orders of magnitude smaller than Iabs(0)
in typical experiments. Hence according to equation (3.3) T (u, τ ) is a metastable
temperature profile approximately equal to the steady state profile scaled by a factor
T (0, τ )/Tst (0) and the power of the thermal lens is given by the central curvature of the
temperature profile: ∇2

uT (0, τ ) = 2∂2T (0, τ )/∂u2 ≈ −2PAmin/πLK .
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n ), and immediately prior to the next jump T (r, t−n+1), given by equation (3.12). (At 2 s, 2.5 s
and 5 s in figure 12(b)).

(ii) At a jump the axial absorption factor goes rapidly through its maximum Amax as
∂T /∂τ(0, τ ) goes through its maximum ≈ET/(τ = 1) = π/kL dn/dT . Hence the
magnitude of the central curvature goes through a maximum given by {2PAmax/πK −
π/k(dn/dT )}/L, which is typically between one and two times 2PAmin/πLK . This
causes an outward jump in the diameter of the far field beam pattern corresponding to the
jumps in central and total transmitted power.

We can compute the transmitted beam pattern before each jump from equations (5.6) to (5.8).
The near field beam pattern immediately after each jump has a slightly larger peak amplitude
and steeper phase profile than before and hence the far field ring pattern will have a larger
diameter. As T (u, τ ) relaxes to the metastable profile, the phase profile becomes less steep
and hence the diameter of the far field pattern relaxes back to the diameter before the previous
jump. This explains the quasi-cyclic pattern of rapid outward jumps followed by slow inward
relaxation of the diameter of the observed far field beam patterns.

6. Discussion and conclusions

Transient oscillations under steady illumination, such as those in BNN and Ce:SBN, do
not necessarily indicate optical bistability. True optical bistability involves the existence of
multiple stable output states for a single value of incident power above some threshold, as
shown in PMN in figure 5. As we have shown, it arises in PMN and PLZT from thermal
bistability due to Fabry–Pérot feedback and involves a theoretical S-shaped dependence of
temperature on incident power and on time. In transient observations, it is indicated by an
aperiodic sequence of relaxations towards metastable output values as in figure 2.

The steady state optical bistability curves as well as the occurrence and timing of aperiodic
relaxation oscillations in PMN and PLZT can be explained quantitatively by a diffusive
nonlinear etalon model in which the sample thickness is less than the waist length of the incident
laser beam. We have shown that the optical bistability observed arises from longitudinal
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bistability in the axially averaged temperature profile and that the jumps in the transmitted
beam patterns correspond to jumps in the temperature profile over the beam width (‘whole
beam switching’). Switching waves outside the beam width do not occur. The radially
symmetric transverse oscillations observed in the far field transmitted and reflected beams are
a consequence of relaxation oscillations in the refractive index profile driven by oscillations
in the mean internal beam intensity. In order to model these transverse effects, including the
correct form for the curve of central irradiance against time (figure 2), the temperature profile
from section 3 was substituted into equations (2.10) and (2.11), which were then solved in the
first iteration (including the ∇2

u terms) to determine the phase and amplitude of EF (u, ζ ) and
EB(u, ζ ) and to verify the initial assumption of z independence of the heating term.

As shown in figure 18, the computed far field transmitted beam patterns closely match
those produced by a 1.4 mm thick PMN sample for the stated values of beamwidth and power.
For combinations of beamwidth, laser power and sample thickness which produce a somewhat
greater maximum local irradiance within the sample, the circular symmetry in the centre of
the pattern is broken and the central rings of the thermal focusing patterns are replaced by
high contrast patterns which may have lower symmetry. Both hexagonal and chaotic patterns
have been observed in the central region of the beam patterns produced by PMN (Scott and
O’Sullivan 1996, Scott et al 1996) and a diamond pattern is observed in BNN (Chen and
Scott 1993a). In section 3, we have shown that the temperature variation in the z direction in
ferroelectric samples subjected to c.w. laser illumination in experiments reported to date is of
the order of 1% or less. Hence the radially symmetric bistability phenomena so far observed
can be quantitatively explained in terms of a temperature profile which depends only on r and t .
Nevertheless, if the spatial symmetry breaking observed in BNN and PMN is due to thermo-
optic effects, z dependence must be taken into account in order to calculate the magnitude of
the thermal diffraction grating produced in the sample. For Gaussian illumination, the thermal
grating vector will have a radial component which varies with position in the sample. For
each value of the grating vector, the diffraction it produces will tend either to reinforce or
to suppress it, resulting in either positive or negative feedback as shown by Firth (1990). In
future work, we will investigate whether the non-planar generalization of this grating is able
to account for the observed radial symmetry breaking or whether another effect in addition to
the thermo-optic effect (e.g. the photo-refractive effect) is involved.

One should note that aperiodic relaxation oscillations do not require oscillation in
temperature (Rozanov 1981) in any part of the sample and such temperature oscillations have
not been observed experimentally in PMN to date. Sequences of aperiodic oscillations which
appear to approach a periodic regime as the phase transition is approached have been observed
by Chen and Scott (1993b). However, experiments to date have not shown the existence
of perfectly periodic oscillations, unlike other optical bistability systems (including liquid
crystals, atomic vapours and semiconductors). Thus the existence of a periodic oscillation
threshold in parameter space remains an open question and, in our judgment, an important
one. In a separate paper we show the existence of a threshold for Hopf bifurcation to a regime
of periodic oscillations and shown that it lies not far above the power density limits used in
experiments to date. Thus future experiments should endeavour to use higher power levels
(subject to optical damage thresholds) very near TC (where dn/dT is maximum) in order
to search for this predicted threshold. In a diffusively nonlinear thermo-optic Fabry–Pérot
resonator with thickness less than a few mm, the thermal conduction time tK is many orders
of magnitude greater than the round-trip time tR of the light. The minimum value of tK given
by w → λ is about 1 µs, whereas tR < 70 ps for samples <1 cm thick. Hence periodic
oscillations in the light output from such a system would be quite different in origin from the
periodic oscillations described by Ikeda et al (Ikeda 1979, Ikeda et al 1980) and Goldstone
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Figure 20. Beam deviation angle against applied field electric field at the transition temperature
in BNN, with slope −2/δ where δ is the critical exponent characterizing the response electric
displacement to field along the critical isotherm. The data points are for the c axis (top) and the
a axis (bottom) and the lines correspond to δ = 5 (Chen and Scott 1992).

and Garmire (1981), in which the optical round-trip time is comparable to the response time
of the medium (see also Cheung et al 1983 and Khoo et al 1984). In that case, of course, the
SVEA equations must include time derivatives.

Truly periodic oscillations can also occur in thermo-optic materials in which other pro-
cesses additional to heat flow occur, provided their timescales are comparable to the thermal dif-
fusion time tK . This is not the case in the photorefractive process in PMN but it can be realized
in liquids in which the absorbing species is subject to diffusion or in which phase changes occur.

For relaxor ferroelectrics such as PMN and PLZT, one can approximate dn/dT = constant
below or above the phase transition temperature. However, in most crystals with displacive
phase transitions, n(T ) varies as (T0 − T )β over a range from 1 to 20 K below the transition,
where β = 1/2 for second-order transitions and 1/4 near tricritical points. This is true at
both magnetic phase transitions and structural phase transitions (Becker and Gehring 1975,
Gehring 1976, Harley and Macfarlane 1975). Note that thermal focusing, with focal strength
directly proportional to dn/dT , is a more sensitive measurement of critical indices than is
birefringence, which is proportional to n(T ). The divergence in n(T ) can be very large and
is probably greatest in tetragonal–cubic transformation in the ferroelastic scheelite BiVO4. In
that material En is 1.4 × 10−2 from 515 to 520 K and 2.75 × 10−2 from 505 to 515 K, so
that dn/dT = 2.8 × 10−3 K−1 over a range of ∼15 K (Wood et al 1980). This value can
be further enhanced to dn/dT = 6 × 10−3 K−1 by applying 0.6 GPa of hydrostatic pressure
(Wood and Glazer 1980). In such systems thermal focusing should be very large; as many as
35 interference rings are observed in the far field pattern in Ba2NaNb5O15 (Scott et al 1991,
Chen et al 1991a). The peak value of dn/dT just below the transition in this material is
2.5 × 10−3 (Yamada et al 1970).

It is also possible in ferroelectrics to increase n(T ) and dn/dT near the Curie temperature
by application of an electric field E (Beale et al 1991). Many ferroelectrics are nearly tricrit-
ical, such that their phase transitions become second order by application of modest electric
fields. This has been studied in great detail for KH2PO4 (Courtens and Gammon 1981) and
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Ba2NaNb5O15. The latter tungsten bronze structure has a phase transition near 845 K that is
tricritical. The electric field required to reach its second-order transition point(s) at 845 K is
0.32 ± 0.02 kV cm−1 (Sheih et al 1991), at which point they determine from thermal focusing
experiments β = 0.28±0.01, γ = 0.94±0.02 and δ = 5.0±0.2 (see figure 20). Under such a
field its thermal focussing increases approximately 25%. In addition, a fluctuation-quenching
phenomenon occurs such that the shape of the curve describing thermal focussing magnitude
versus temperature changes with field. This has been interpreted not as a change inn(T ,E)with
field, but as due to a change in thermal conductivity K(T ,E) with field (Scott and Sheih 1990)
due to fluctuation quenching of the cusplike dip in thermal diffusion for that material (Nettleton
1970). Such large changes in K(T ,E) with field (∼20% per kV cm−1) were first reported by
Sievers (1963) in strontium titanate and explained theoretically by Fatuzzo (1964), but in gen-
eral neither the sign nor magnitude of dK/dT near TC can be predicted from theory (Nettleton
1970). As shown in section 4, for materials which exhibit aperiodic thermo-optic switching os-
cillations, comparison of the experimental switching times with those given by our model can
be used to estimate the temperature dependence of K , including the cusplike anomaly near TC .

Appendix A. Green function and T (u, ζ, τ ) for Gaussian heating with constant
absorption factor

The heat equation in dimensionless cylindrical polar coordinates for the temperature
T (u, ζ, θ, τ ) due to an instantaneous point heat source of strength D at (u′, ζ ′, θ ′, τ ′) is

∂2T

∂u2
+

1

u

∂T

∂u
+

w2

L2

∂2T

∂ς2
+

1

u2

∂2T

∂θ2
− ∂T

∂τ
= −Dδ(�u − �u′)δ(τ − τ ′) (A.1)

where u = r/w, ζ = z/L, τ = κt/w2, κ = K/ρc = thermal diffusivity, L = sample
thickness, K = thermal conductivity, w = beamwidth, ρ = density and c = specific heat.

The solution for the region 0 � ζ � 1 with the ‘radiation boundary condition’
∂T /∂ζ = ±hT at the faces ζ = 0, 1 and τ ′ = 0 is D times the Green function given in
Carslaw and Jaeger (1959) for a unit source:

T = D e−U 2/4τ

2πτ

∞∑
n=1

gn(ς)gn(ς
′)

(γ 2
n + h2) + 2h

e−(γnw/L)2τ

where gn(ς) = (γn cos γnς + h sin γnς), U 2 = u2 + u′2 − 2uu′ cos(θ − θ ′), h = HL/K ,
H = sum of linearized convection and radiation coefficients and γn (for n = 1, 2, 3, . . .) are
the roots of the equation

tan γ = 2γ h/(γ 2 − h2). (A.2)

Changing the axial variables to ς̄ = ς − 1/2 and ς̄ ′ = ς ′ − 1/2, we obtain

gn(ς) = (γn cos γn/2 + h sin γn/2) cos γnς̄ + (h cos γn/2 − γn sin γn/2) sin γnς̄ .

Hence

gn(ς)gn(ς
′) = Bn cos γnς̄ cos γnς̄

′ + Cn sin γnς̄ sin γnς̄
′

+Dn(cos γnς̄ sin γnς̄
′ + sin γnς̄ cos γnς̄

′)

where

Dn = (γn cos γn/2 + h sin γn/2)(h cos γn/2 − γn sin γn/2) = γnh(cos2 γn/2 − sin2 γn/2)

+(h2 − γ 2
n ) sin γn/2 cos γn/2 = 0

by equation (A.2)

Bn = (γn cos γn/2 + h sin γn/2)2 = (γn + h tan γn/2)2 cos2 γn/2

Cn = (h cos γn/2 − γn sin γn/2)2 = (h − γn tan γn/2)2 cos2 γn/2.
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Since tan γ = 2(tan γ /2)/(1 − tan2 γ /2), there are two branches of solutions for
tan γ /2 arising from equation (A.2). For n = 1, 3, 5, . . . tan γn/2 = h/γn and for n =
2, 4, 6, . . . tan γn/2 = −γn/h.

Hence for n odd, Bn = γ 2
n + h2 and Cn = 0. For n even, Bn = 0 and Cn = γ 2

n + h2.
Defining βm = γ2m−1 and δm = γ2m for m = 1, 2, 3, . . . and replacing ς̄ by ς and ς̄ ′ by

ς ′ we obtain

T = D e−U 2/4τ

2πτ

∞∑
m=1

{
cosβmς cosβmς

′

1 + 2h/(β2
m + h2)

e−(βmw/L)2τ +
sin δmς sin δmς

′

1 + 2h/(δ2
m + h2)

e−(δmw/L)2τ

}
. (A.3)

Equation (A.3) with

tan βm/2 = h/βm (A.4)

and tan δm/2 = −δm/h satisfies the boundary conditions: [hT ± ∂T /∂ζ ]ζ=±1/2 = 0.
The rate of heat generation per unit volume due to a Gaussian beam is αaI (u

′, ζ ′, τ ′)
where I (u′, ζ ′, τ ′) = Ip exp{−2u′2 − αL(ζ ′ + 1/2)}, Ip = peak irradiance, α = extinction
coefficient and αa = linear absorption coefficient. The power absorbed in a single pass

ρcw2LD/tK = Pabs = 2παaw
2L

∫ ∞

0
du′ u′

∫ 1/2

−1/2
dς ′ I (u′, ς ′) = πw2Ipαa

2α
(1 − e−αL).

(A.5)

Hence, if αL � 1, Ip = 2Pabs/παaLw2. For a thin sample, we replace αaI (u
′, ζ ′, τ ′) by

its axial average, αaIp(1 − e−αL)[exp(−2u′2)]/αL = (2Pabs/πLw2) exp(−2u′2). The tem-
perature due to an instantaneous cylindrical Gaussian source of this strength at time τ ′ = 0 is
therefore

T = 2PabstK

πρc

∫ ∞

0
du′ u′

∫ 2π

0
dθ ′

∫ 1/2

−1/2
dς ′ G(u, ς, θ, τ ; u′, ς ′, θ ′, τ ′ = 0) exp(−2u′2) (A.6)

where

G = e−U 2/4τ

2πτLw2

∞∑
m=1

{
cosβmς cosβmς

′

1 + 2h/(β2
m + h2)

e−(βmw/L)2τ +
sin δmς sin δmς

′

1 + 2h/(δ2
m + h2)

e−(δmw/L)2τ

}
. (A.7)

After carrying out the integrations with respect to ζ ′ and θ ′, using
∫ 2π

0 dθ ′ exp[−2uu′ cos(θ −
θ ′)/4τ ] = 2πI0(uu

′/2τ) where I0 is a modified Bessel function of the first kind of order 0,
equation (A.6) becomes

T = 4PabstK e−u2/4τ

πρcτw2L

∫ ∞

0
du′ u′ exp

{
−u′2

(
2 +

1

4τ

)}
I0

(
uu′

2τ

)

×
∞∑

m=1

cosβmς sin βm/2

βm{1 + 2h/(β2
m + h2)} e−(βmw/L)2τ . (A.8)

Now ∫ ∞

0
du′ u′ exp(−a2u′2)I0(bu

′) = 1

2a2
exp(b2/4a2) (A.9)

(Prudnikov et al 1986).
Hence, on reversing the integration and summation in equation (A.8) and re-instating the

notation ς̄ , we obtain

T = 8PabstK

ρcπLw2

∞∑
m=1

cosβmς̄ sin βm/2

βm{1 + 2h/(β2
m + h2)}

exp{−2u2/(1 + 8τ) − (βmw/L)2τ }
1 + 8τ

.
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The Green function for an instantaneous source at time τ ′ is obtained by substituting τ − τ ′

for τ in (A.7). Hence the temperature at time τ due to a source of constant strength switched
on at time τ ′ = 0 is

T = 8Pabs

πLK

∞∑
m=1

cosβmς̄ sin βm/2

βm{1 + 2h/(β2
m + h2)}

∫ τ

0

dτ ′

1 + 8τ ′ exp

( −2u2

1 + 8τ ′ − w2β2
mτ

′

L2

)
. (A.10)

Setting u = 0 gives the time-dependent axial temperature due to the steady Gaussian source:

T = Pabs

πLK

∞∑
m=1

cosβmς̄ sin βm/2

βm{1 + 2h/(β2
m + h2)}

× exp

(
w2β2

m

8L2

) [
E1

{
w2β2

m

8L2

}
− E1

{
w2β2

m

8L2
(1 + 8τ)

}]
(A.11)

and hence the steady-state axial temperature:

T = Pabs

πLK

∞∑
m=1

cosβmς̄ sin βm/2

βm{1 + 2h/(β2
m + h2)} exp

(
w2β2

m

8L2

)
E1

(
w2β2

m

8L2

)
(A.12)

where E1(x) is the exponential integral function
∫ ∞
x

dt e−t /t .

Appendix B. Solution of the slowly varying envelope equation with the Ein function

Substituting EF (u, ζ ) = E0(u, ζ ) exp[{ikn0ζ + ikn0S(u, ζ ) − αζ/2}L] into equation (2.10)
and equating real and imaginary parts gives

(w/L)2∂E2
0/∂ς + (∂S/∂u)∂E2

0/∂u + E2
0{∂2S/∂u2 + (∂S/∂u)/u} = 0 (B.1)

and(w

L

)2 ∂S

∂ς
+

1

2

(
∂S

∂u

)2

= 1

2k2n2
0L

2E0

(
∂2E0

∂u2
+

1

u

∂E0

∂u

)
+

w2

n0L2

dn

dT
T (u). (B.2)

Using the ansatz S(u, ζ ) = β(ζ )Ein(2u2) + φ(ζ ), equation (B.1) becomes

(w/L)2∂E2
0/∂ς + 2(β/u)(1 − e−2u2

)∂E2
0/∂u + 8β e−2u2

E2
0 = 0. (B.3)

As in the approach based on the parabolic phase ansatz, we seek the appropriate functional
form for E2

0 by transforming to a new coordinate system in which E2
0 takes a simple

form. Changing the independent variables to η = η(u, ζ ) and σ = σ(u, ζ ) equation (B.3)
gives{(w

L

)2 ∂η

∂ς
+

2β

u
(1 − e−2u2

)
∂η

∂u

}
∂E2

0

∂η
+

{(w

L

)2 ∂σ

∂ς
+

2β

u
(1 − e−2u2

)
∂σ

∂u

}
∂E2

0

∂σ

+8β e−2u2
E2

0 = 0. (B.4)

Setting (w/L)2∂η/∂ς + (2β/u)(1 − e−2u2
)∂η/∂u = 0 with η = Zη(ς)Uη(u)

gives

−(w/L)2Z′
η/βZη = 2(1 − e−2u2

)U ′
η/uUη = constant.

Hence an appropriate choice for η is η = eg(ς)(e2u2 − 1) with g(ς) =
−8(L/w)2

∫
β(ς) dζ .

We now transform equation (B.4) into

σ∂E2
0/∂σ + E2

0 = ∂(σE2
0)/∂σ = 0 (B.5)
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by choosing σ such that

(w/L)2∂σ/∂ς + (2β/u)(1 − e−2u2
)∂σ/∂u = 8β e−2u2

σ

with σ = Zσ (ς)Uσ (u).
Hence

−(w/L)2Z′
σ /βZσ = 2(1 − e−2u2

)U ′
σ /uUσ − 8 e−2u2 = constant.

So we choose

σ = eg(ς)(1 − e−2u2
)2 e2u2

.

Then equation (B.5) gives E2
0 = Y (η)/σ where Y is an arbitrary function of η.

To satisfy the boundary condition E2
0 = Ip e−2u2

we must have

E0(u, ς) = Ep exp 1
2 {−g(ς) − 2u2}/[1 + {e−g(ς) − 1} exp(−2u2)].

Substituting for E2
0 in equation (B.2) we obtain an equation for g(ζ ):

β ′Ein(2x) + φ′ +
2L2β2

w2u2
(1 − e−2x)2 = 2{(x + 1)p2 e−2x + (x − 1) e2x − 6px}

k2n2
0w

2(ex − p e−x)2
+

1

n0

dn

dT
T (u)

(B.6)

where x ≡ u2 and p ≡ e−g − 1.
Setting u = 0 in equation (B.6) we obtain an equation for φ′(ζ ):

φ′(ς) = 2(p − 1)

k2n2
0w

2(p + 1)
+

1

n0

dn

dT
T (0)

which gives φ′(ζ ) once g(ζ ) is known.
Substituting for φ′(ζ ) in equation (B.6) gives

β ′Ein(2x) +
2L2β2

w2u2
(1 − e−2x)2

= 2{(x + 1)p2 e−2x + (x − 1) e2x − 6px}
k2n2

0w
2(ex − p e−x)2

− 2(p − 1)

k2n2
0w

2(p + 1)
− C

n0

dn

dT
Ein(2x)

where C = AsP/4πLK . To first order in x (equating coefficients of u2) we obtain

β ′ = p2 − 10p + 1)

k2n2
0w

2(p + 1)2
− C

n0

dn

dT

i.e. − w2

8L2
g′′ = 1 − 12 eg + 12 e2g

k2n2
0w

2
− C

n0

dn

dT

∴
d( 1

2g
′2)

dg
= 8L2{C(dn/dT )/n0 − (1 − 12 eg + 12 e2g)/k2n2

0w
2}/w2.

Now g(0) = 0 = g′(0) so
1

2
g′2 = 8L2Cg(dn/dT )/n0w

2 − 8L2(g − 12 eg + 6 e2g + 6)/k2n2
0w

4.

The solution of this equation is discussed in section 5.
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